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Abstract

How can molecules compute? In his early studies of reversibinputation, Bennett imagined an
enzymatic Turing Machine which modified a hetero-polymeictsas DNA) to perform computa-
tion with asymptotically low energy expenditures. Adlersaecent experimental demonstration
of a DNA computation, using an entirely different approdchs led to a wealth of ideas for how
to build DNA-based computers in the laboratory, whose gnefgciency, information density,
and parallelism may have potential to surpass conventielegtronic computers for some pur-
poses. In this thesis, | examine one mechanism used in afjrdefor DNA-based computer —
the self-assembly of DNA by hybridization and formation loé tdouble helix — and show that this
mechanism alone in theory can perform universal computafi@ do so, | borrow an important
result in the mathematical theory of tiling: Wang showed ljigsaw-shaped tiles can be designed
to simulate the operation of any Turing Machine. | proposestmicting molecular Wang tiles
using the branched DNA constructions of Seeman, therebguging self-assembled and algo-
rithmically patterned two-dimensional lattices of DNANSilations of plausible self-assembly
kinetics suggest that low error rates can be obtained neamtiting temperature of the lattice;
under these conditions, self-assembly is performing siler computation with asymptotically
low energy expenditures. Thus encouraged, | have begun @arimental investigation of al-
gorithmic self-assembly. A competition experiment suggdisat an individual logical step can
proceed correctly by self-assembly, while a companion expt demonstrates that unpatterned
two dimensional lattices of DNA will self-assemble and canvisualized. We have reason to
hope, therefore, that this experimental system will prawetfil for investigating issues in the
physics of computation by self-assembly. It may also leddteresting new materials.
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Chapter 1  Contributions

1.1 Introduction to DNA-Based Computation

How can molecules be used to compute? The ground-breakingofiédleman (1994) showed,
in analogy within vitro selection techniques in combinatorial chemistry, how DN&ences
can encode mathematical information and how simple segseoicstandard molecular biology
experiments can be used to isolate the DNA which encodesweea to a difficult mathematical
problem. | review this work, and its extensions by Lipton9%® | place a complexity-theoretic
limit on what mathematical information can be isolatedrbgteps of affinity separation alone
and byn steps of affinity separation in combination with PCR ampdifien. This emphasizes
the contribution of Boneh et al. (1996a), who show a techmithat uses affinity separation in
combination with ligation to overcome the limit.

Hagiya et al. (in press) proposed a novel experimental tgakenwvhich promises to simplify
the selection process for DNA-base computation. In the@hnéue, a single chemical reaction
based on PCR can perform a sequence of logical operatiomsaubusly. | present a new analysis
of the computational power of this technique, highlightihg role of the combinatorial generation
of structured sets of DNA strands. | show how to solve the Ftensatisfiability, Independent
Set, and Hamiltonian Path problems using this technigue | @nopose a novel extension of the
technique to solve the Circuit Satisfiability problem.

1.2 Models of Computation by Self-Assembly

Since Adleman’s original paper, every proposal for DNAdzhsomputation has made use of the
sequence-specific hybridization of Watson-Crick completaey oligonucleotides. Most applica-
tions have been very straightforward, and the the most stiphied use of this self-assembly is
still Adleman’s original technique for creating duplex DN&presenting paths through a graph.
However, much more elaborate DNA constructs are possiblep@aomized by Seeman’s exten-
sive experimental research in DNA nanoconstructions: dhitesh to duplex DNA, hairpinsg-arm
junctions, and double-crossover molecules are all passii$ing this expanded vocabulary, what
computations can be done with self-assembly alone? To arkigequestion, | use the frame-
work of formal language theory to develop a model of DNA seéembly in which such ques-
tions can be rigorously answered. The surprising resulhas in the two-dimensional case the
self-assembly model is Turing-universal, and that nattgsirictions of the model reproduce the
Chomsky Hierarchy of language families. These restrigtigrate to the types of DNA building-
blocks used, and the form of their arrangement into largeicsires: the self-assembly of linear
duplex DNA into linear polymers produces regular languagfes self-assembly of duplexes, hair-
pins and 3-arm junctions into dendrimers produces coritegtianguages; and the self-assembly
of double-crossover molecules into two-dimensionaldattiachieves Turing-universality, produc-
ing recursively enumerable languages.

To make analysis possible, the theoretical models had tesakeral simplifying assumptions
that would not strictly hold in the real world. How severehsstinaccuracy, and is it plausible to
design DNA molecules whose real behavior mimics that of thee? The thermodynamics and
kinetics of DNA hybridization have been extensively stagliproviding a solid foundation for a
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guantitative plausibility argument. To apply this knowgedo the two-dimensional case, one must
know whether multiple binding domains are cooperative ngshe assumption that binding ener-
gies are additive, | have developed equations for the kiseti the two-dimensional self-assembly
process — akin to 2D crystal growth — and implemented thetemsin a computer simulation.
The simulation results suggest error-free growth occuremdnsystem with low concentrations of
the DNA monomers is held near the melting temperature of tNé [ttice.

1.3 Experiments with Self-Assembly

Can the proposed models be implemented experimentally? sifinglations made use of two
assumptions that had no direct experimental support: @ ttke envisioned two-dimensional
lattices can be made, independently of whether any compntaén be embedded in them, and
(2) that the four binding domains in double-crossover male@ct cooperatively in a growing
two-dimensional lattice. | therefore performed experimagtests of these two hypotheses. Each
experiment involved three stages: the design of sequencd3NA oligonucleotides composing
the desired building blocks, the synthesis and self-askenfithose oligonucleotides into building
blocks and the subsequent self-assembly of the buildingkblanto larger structures, and the
experimental analysis and characterization of the reguktructures.

To assist in the design of sequences for the coming expetémehich involve many tens of
oligonucleotides and thousands of nucleotide positiodsyvkloped software tools for evaluating
sequences according to various heuristic criteria anddtmmaatically optimizing to find improved
sequences according to the criteria.

Question (2) was approached first. In work with collabomtSeeman and Yang, a 150-K
Dalton molecular system was designed to model the binditegirsia growing two-dimensional
lattice of double-crossover molecules. As envisioned lierlattice, the binding site consisted of
two single-stranded DNA binding domains available for ligization, separated by 20 nm. Co-
operativity was tested by competition of binding betweea molecules. The target molecule had
perfect complementarity to both binding domains, whiled¢hgatz molecule had perfect comple-
mentarity to one binding domain but 50% mismatches in theratlomain. Even in the presence
of a 64-fold excess of the ersatz molecule, the target mi@egas preferred in the binding site,
indicating cooperativity.

Question (1) was then addressed. | designed a system of wmedorossover molecules that
can self-assemble into a two-dimensional lattice. The Eeolmssover molecules and the result-
ing lattice were characterized by gel electrophoresis asdalized by atomic force microscopy.
Attaching a bulky DNA “arm” to just one of the double-crossovnolecules produced stripes with
the expected period in the atomic force microscope imagedirming the correct lattice structure
of the self-assembled crystal. A similar system was ingastid in Seeman’s lab.

These two properties, that double-crossover moleculesalfassemble into a two-dimensional
crystal and that the two binding domains at binding sitesnduattice growth are cooperative, are
the key ingredients for a real implementation of the Turimgversal model of computation by
self-assembly of DNA.

1.4 Publication List

This thesis contains material from several conferenceigatibns and one journal article. | was
the first author on all papers, and the writing is primarily myn. The creative ideas and the
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actual labor for all the results presented here are due pilimta me, except where explicitly

noted. Some of the text and figures in this thesis come dyréctin those articles, although most
of it has undergone revision, and occasionally correctionjncorporation into this thesis. | am
solely responsible for any mistakes herein.

Chapter 2 uses material from:

Erik Winfree, “Complexity of Restricted and Unrestrictecbifels of Molecular
Computation” (Winfree 1996a).

Erik Winfree, “Whiplash PCR fo)(1) Computing” (Winfree in press b).

Chapter 3 uses material from:

Erik Winfree, “On the Computational Power of DNA AnnealingdaLigation”
(Winfree 1996b). The ideas in this paper, although due toweze heav-
ily influenced by discussions with Seeman, in particulahweéspect to the
choice of the double-crossover molecule to implement the.ti

Erik Winfree, Xiaoping Yang, Nadrian C. Seeman, “Univer€a@mputation via
Self-Assembly: Some Theory and Experiments” (Winfree etralpress).
Chapter 3 discusses the theoretical results in this pagdchware due en-
tirely to me.

Erik Winfree, “Simulations of Computation by Self-Assenyib{Winfree in press
a).

Chapter 4 uses material from:

Erik Winfree, Xiaoping Yang, Nadrian C. Seeman, “Univer€aimputation via
Self-Assembly: Some Theory and Experiments” (Winfree etralpress).
Chapter 4 discusses the experiments reported in this pgpeman outlined
the experiments and designed the DNA sequences. Yang dddiga exper-
imental details and supervised my execution of the labogrdaezhniques for
initial experiments. | designed and carried out all furtbperiments myself.

Erik Winfree, Furong Liu, Lisa A. Wenzler, Nadrian C. Seemébesign and
Self-Assembly of Two-Dimensional DNA Crystals” (Winfre¢ a&. 1998).
This paper describes two parallel experimental invedtigatof an idea de-
rived from Winfree (1996b); the creative ideas in this pager due to See-
man and myself. The experiments on DAE molecules were dedignd car-
ried out by Liu, Wenzler, and Seeman; the experiments on DAecules
were designed and carried out by myself. Chapter 4 of thisisheresents
only the results on DAO molecules.
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My work at Caltech was supported by National Institute forrté Health (Training Grant # 5
132 MH 19138-07), General Motors’ Technology Researchrféasthips program, and the Center

www.manaraa.com



4

for Neuromorphic Systems Engineering as a part of the NatiBoience Foundation Engineering
Research Center Program (under grant EEC-9402726). My wabtke University of Electro-
Communications in Tokyo, Japan was supported by the Japaet$éor the Promotion of Science
“Research for the Future” Program, project JSPS-RFTF 96100

www.manharaa.com




Chapter 2 Introduction to DNA-Based Computation

2.1 Why Compute with Molecules, and How?

All computers are physical objects, made from atoms and catés, and are governed by the laws
of physics. For most purposes, this fact can readily be gpghoand computers can be analyzed
at a purely logical level. However, as Moore's Law plays ontl @omputers are built out of
ever smaller devices, the atomic, molecular, and quantunreaf those devices becomes ever
more important — as do the fundamental physical limits of potation, such as those imposed
by reversibility, heat generation, and thermal noise. Tést larchitectures for computers built at
these scales may be very different from the ones we are famiith now.

An examination of molecular biology provides importanttkifor information processing by
molecules. Somé x 10° bits of information are stored in the human genome, in theeuscof
every living cell in your body, at a density near 1 bit perfim single cell contains on the order of
10? active macromolecules (proteins, enzymes, polynuclestid) acting in parallel to control
the functions of the cell, despite thermal noise and theaamss inherent in diffusible elements.
However, it is not immediately clearvhata cell is “computing,” or how one could make use of
molecular mechanisms like those in the cell for computing.

Still, to a computer scientist, the mechanisiosk like computational primitives, and one of
the central themes of computer science has been that juat abg grab bag of primitives is
theoretically sufficient for building a Turing-universalachine. We will see that the molecular
biology grab bag also suffices.

2.2 Computing Inverse Sets with DNA

Abstract® In Adleman’s paradigm for solving combinatorial problemihw
DNA, the problem to be solved is encoded as a sequence ofieqres to be
performed upon a combinatorial library of DNA. We would liltés sequence
of experiments to be as brief as possible. Thus we examinexpressive
power of different experimental paradigms. We begin with fibrmal models
of Lipton (1996b) and Adleman (1996), which make focused afseaffin-
ity purification. The use of PCR was suggested in Lipton (1336 expand
the range of feasible computations, resulting in a secondetndBy giving
a precise characterization of these two models in terms adgrized com-
putational complexity classes, namely branching progré®® and nonde-
terministic branching programs (NBP) respectively, wevshioat PCR only
incrementally increases the computational power. Howeter use of liga-
tion, introduced by Boneh et al. (1996b), results in a thirmdel which does
significantly increase the computational power.

!Results in this section also appeared in Winfree (1996anksito Sam Roweis for stimulating discussions and to
Jehoshua Bruck for pointing me to previous literature ombéng programs.

www.manaraa.com



6

Current interest in using DNA to compute was spurred by Adlenil994), who brought
DNA-based computers out of the realm of theory and into eérpental reality. Adleman’s key
insight was to avoid trying to use each DNA strand as a bas& éomplex processor, and instead
to use a vast collection of simple DNA strands to collecfiyarform a single computation. In his
solution to the Hamiltonian Path Problem (HPP), he usediatanmolecular biology techniques
to perform two types of logical manipulation of the DNA. Kjree used sequence-directed poly-
merization of oligonucleotides to generate a combinategaof DNA strand$ representing paths
through a graphG with n vertices. The sequences of the resulting strands encodeettiees
visited by each respective strand. Second, Adleman usedes s¢ PCR reactions, gel elec-
trophoresis experiments, and affinity separations to getffistrands in the combinatorial library
that surelydidn’t represent the correct answer. Paths which weren’t lengtlere removed, then
paths which omitted vertex 1 were removed, and so on untilgpathich omitted vertex. were
removed. The remaining DNA represented valid answers tpiblelem.

This approach was quickly generalized by Lipton (1995), wioted that it is sufficient to
always start with the maximally diverse combinatorial dity representing afi” binary bitstrings,
and to filter that set down to the desired solution. In paldicuhe showed how to solve the
formula satisfiability problem (FSAT): given a Boolean farta with s terms inn, variables, Lipton
showed how a series @(s) affinity separation steps could be performed to find DNA which
encodes values to those variables which make the formwda Because a minute 100 solution
can containl0'® strands of DNA and a single laboratory operation procesidisase strands in
parallel, at first glance it appears that 83r < 10'° ~ 2%, sizen problems can be solved @(n)
steps. As FSAT is among the hardest of the hard problemsyémisrated excitement.

Considered generally, molecular computation as introdumne Adleman (1994) provides a
new approach to solving combinatorial inverse problemsgretwe are interested in computing
f~1(1) where f(x) is a boolean function ofi-bit stringsx. Instances of NP-complete problems
can be expressed in this form; for example, in 3-SAT we agk if(1) is non-empty forf given
as a 3-CNF expression. Adleman’s technique involves usidiyidual DNA strands to represent
potential answer bit-stringg, then operating on a test tube containing all possible arstee
separate those which satisfyfrom those which don’t. In many instances, the number ofirsgrt
operations required is a low-order polynomial7in suggesting that — given exponential space
to store the DNA — hard combinatorial problems can be solf&diently with this technique.
Because the bounded resource of space to store the DNA igtisalcin this discussion we will
only consider using)(2") strands. Using substantially more DNA, e.g. to search ogditianal
non-deterministic variables, is considered “cheatingi.other words, the question is, “Given a
fixed amount of DNA, what functions can we easily solve?”

It was not immediately clear, however, what class of boofeactions f could be efficiently
inverted. In a clarifying paper, Lipton (1996b) showed ttiaf can be represented as a size
formula of AND-OR-NOT (AON) operations, thefi can be inverted usin@L molecular steps
using affinity purification only. Lipton suggested furthérat the use of PCR to duplicate the
contents of a test tube would allow an even greater classiefifins to be inverted using molecular
computation. In this note we follow his program and chanmdmteexactly to what extent PCR
helps, in terms of known complexity classes.

As individual steps can take on the order of 15 minutes to am,lemall differences in com-
plexity quickly make the difference between feasible arfddrible experiments. Thus it is of

2The termsstrand, oligonucleotide, olig@ndpolynucleotideall refer single-stranded DNA molecules, and they are
all roughly interchangeable. However, “oligo” means “afand thus refers to short strands — a few tens of nucleotides.
A combinatorial set of DNA strands is calleccambinatorial libraryfor short.
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importance to characterize the complexity of these modaisadecular computation as carefully
as possible. Classes such as “polynomial-size” are todrtmude really useful — we really want
to know exactly what polynomial it is.

After defining the two models of molecular computation, wé demonstrate their correspon-
dence with branching programs, and conclude with a few iratithns of the correspondence.

2.2.1 Abstract Models of Molecular Computation

We use the models described in Lipton (1996b) and Adlema@gf1%nd use similar notation.
These models assume perfect performance of each operalilbboygh in practice the molecular
biology techniques are known to be somewhat unreliabletialmiomments on this aspect of
the models, the origin of the namasstricted modelndunrestricted modeland other practical
matters, can be found in Adleman (1996).

The Restricted Model:

A test tubds a set of molecules of DNA encoding assignments of valueariablesr; .. . z,,.
Each assignment, e.g:;7 = 1, is encoded using a uniqgue DNA sequence, sufficiently dissim
ilar from encodings of other assignments. Each DNA strasdsmply the concatenation of all
assignment encodings. We operate on test tubes as follows:

e Separatef]. Given a tubel” and an indeXi, produce two tubes-(T', ) and— (T, ), where
+(T,14) contains all strings where bitis set, and-(7", S) contains all strings where hitis
cleared. Tubd is destroyed.

e Merge. Given tubesr,, andT;, pourT, into T, thereby makindgl, < T, U Ty. TubeT; is
destroyed.

Separateis implemented using affinity separation based on the poesehthe appropriate
DNA sequence (Adleman 1994), and the implementatiomefgeis obvious. At the end of the
computatiofi, when we presumably have a single test tube containingradgstin f~'(1), we
can use the following operation to sequence the strnigsthe test tube, as described in Adleman
(1996):

¢ Detect.Given a tuber’, say ‘yes’ if T' contains at least one DNA molecule, and say ‘no’ if
it contains none. Tub@ is preserved.

The implementation ofletectis based on PCR. frogran? is a sequence of operations on
labelled test tubes. Each statement is of the form:

(+(Ty,i) = Typ; —(Ty,4) — Te; ),

where the arrow means “is to be merged with”. In other word® separation and two merges
occur for every statement (but note thigtor T, may be empty prior to the merge). For clarity,

3We consider only the case where one variable at a time isdtesere sophisticated operations where multiple
DNF minterms are tested simultaneously (see Boneh et @69 require more lengthy preparation; thus we argue
that the single variable case is not unreasonable for miegstomplexity.

“We do not consider here wheth@etectcould be used to advantage in the middle of a computationaremly, it
can be (Lipton 1996a).

5The class of programs as given here is slightly differentiftbat given in Adleman (1996). In particular, we insist
that a labelled test tube is not re-used after its contents baen used (i.e. “destroyed”). The differences are merely
matter of notation, and inconsequential.
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programs can be shown diagrammatically (see Figure 2.1thébeginning, all test tubes are
empty except foff;, which contains al” DNA strands encoding all possible input vectarslf

at the end of the program execution there is a test tube camgaéxactly those bit strings which
satisfy f, then we say say the program has inverfedr has solvedf. Thesizeof a program

is considered to be the number of statements (Begarateoperations) in the program. Since
programs are considered to be executed sequentially, zeeo$ia program to inverf is often
referred to as the time to solve Thewidth of a program is the maximum number of test tubes
co-existing at any given time.

fx)="0<> a <4

GivenT; = {0,1}".

(+(T1,1) = Ts; —(T1,1) —» Ti;) To= MtX txg = 2

Tyg

(+(T2,2) = Ts; — (T2, 2) — Tu;)

(+(To,4) = Tr; —(T9,4) — T13)

(+(T10,4) = Tr; —(Tho,4) = Tr3)

ReturnT7. To= %) Te= 0

Figure 2.1: Implementing an arbitrary symmetric functiamfi("gﬂ separations using the re-
stricted model. Boxes represent separation steps, angdsarepresent the test-tubes. Labels, in a
few illustrative examples, indicate the logical formulaielhevery strand in the test tube satisfies.

The Unrestricted Model:
The unrestricted model allows one addition type of openatioring the computation:

o Amplify. Given a tub€eT produce two tubed’ and T, with contents identical t@". T is
destroyed.

Amplifyis implemented using PCR. Programs for the unrestrictedeirmmhsist of statements
similar to those for the restricted model, but with the aiddial form:

<Ta — Tb7 TC7 >

Here the arrow means, “is to be copied into.” Unrestricteddedi@rograms can also be shown
diagrammatically (see Figure 2.2).

The unrestricted model, unlike the restricted model, cdnadly “circumvent” the restriction
on_using onlyO(2™) strands, because the number of strands can be doubled ety awplify

www.manaraa.com



Tr= () TiGNORE

Figure 2.2: Implementing the functioh(x) = x4(z9 + z3) + T4(21Z2 + T123 + T3z2) USINg the
unrestricted model.

operation. We might expect that the unrestricted modelggriicantly more powerful than the
restricted model. Surprisingly, even though we allow theaxolume “for free”, there is little
benefit.

The Augmented Model:

The augmented model (introduced in Boneh et al. (1996b@@y chot allowamplify, but
instead it adds a different type of operation to the regtdehodel. Here we make use of additional
variablesz,, 1 ... which are not assigned values by the input.

e Appendf; = v]. Given an index > n, a tubeT whose strands each encode values for
variables{z;} not includingz;, and a values € {0, 1}, modify every strand by ligating the
DNA sequence encoding = v.

Programs for the augmented model consist of statementfasitnithose for the restricted
model, but with the additional form:
(T, + +i;)

Note thatappendcannot assign a value to a variable which has already begargesimilarly we
restrictseparateto cases where on every strand the separation variable kasalssigned a value.
Only program for which this two properties can be guaranteedconsidered valid. Augmented
model programs can also be shown diagrammatically (seed-8).

In the augmented model, like the restricted model, the nurabstrands remains constant at
2™, Nevertheless, we will see that the augmented model is mosebul than the unrestricted
model, and that the unrestricted model is more powerful tharrestricted model.
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T = () Te= ()

Figure 2.3: An augmented model program implementing a fanaif unknown importance.

2.2.2 Branching Programs

Since branching programs are not as familiar a model as flagn(inite-state automata, circuits,
Turing machines, etc., it is worthwhile to present an exafinition here. We quote from Wegener
(1987), p. 414:

A branching program (BP) is a directed acyclic graph coimgjsbf one source
(no predecessor), inner nodes of fan-out 2 labelled by Bool@riables and sinks of
fan-out O labelled by Boolean constants. The computatiarssat the source which
is also an inner node. If one reaches an inner node labellag, lmne proceeds to the
left successor, if théth input bite; equals 0, and one proceeds to the right successor,
if a; equals 1. The BP computg¢se B,,° if one reaches for the inputa sink labelled

by f(a).

The size of a BP is the number of inner nodes. Many measure$did¥e been studied,
especially depth and width.

We follow Razborov (1991) in defining a nondeterministic fmiaing program (NBP): we
additionally include unlabelled “guessing nodes” of fan-8 where both branches are allovied
The NBP compute§ € B, if by some allowable path one reaches a sink labelled 1 for all
a € f~1(1). The size of an NBP includes the guessing nodes. BP and NBPbmaijewed
pictorially, as in Figures 2.4 and 2.5, in which the desiget “left” and “right” are replaced by
“dotted-line” and “solid-line” respectively.

6B, is the set of allh-input boolean functions.
"This definition of NBP coincides exactly with Meinel’s 1-tronly nondeterministic branching programs. His
more general definitions seem not to be useful in the confaxibtecular computing.
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source
x1

x2 X2
x3

x3

x4 x4

Figure 2.4: Implementing PARITY of 4 variables using a bitang program of width 2.

source
Q..

xlg
X6 X6

Figure 2.5: Implementing a function using a nondetermimistanching programjf(z) =" x is
palindromic except for isolated (non-adjacent) erro®BP(f) < 2n + 2.

We introduce one more modification of branching programstewosnce branching progams
(WOBP) are branching programs where the edges may be ldielissign a valué (+) or 0 (-)
to any number of gate variablgg; }, and where decision nodes may be labelled by a gate variable
instead of an input variablié all paths to that node assign a unigue value to the gate \&riab
Finally, we also consider circuits where each gate hasrarpitan-out and computes any boolean
function of its 2 inputs.

2.2.3 Correspondence of Models

Restricted Modet Branching Programs
In this section we show that the class of functions which #stricted model can invert in a
given time are exactly those functions computed by a brawgcpiogram of the same size.
Examining Figures 2.1 and 2.4, it is clear that not much neéed® proved. The models are
essentially identical, except for interpretation. Eaghesation step corresponds to an inner node
of the BP. A strand of DNA corresponds to an input vector fa BP. In summary:

1. If restricted model progran® solvesf in k steps, then there is a BRP which computes
and is of sizék.
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source

Figure 2.7: A circuit for the XOR of 3 inputs.

2. If BP G computesf and is of sizek, then there is a restricted model progrdmmwhich
solvesf in k steps.

A single strand of DNA will flow through the test tubes of a reted model program exactly
in the order of inner nodes executed by the associated BRngion an equivalent input vector
Since all possible strands are run in parallel, those thditerin the output test tubig- are exactly
the inputs that the BP accepts; if.'(1).

Unrestricted Modek Nondeterministic Branching Programs

In this section we show that the class of functions which timrestricted model can invert in a
given time are exactly those functions computed by a nonuétéstic branching program of the

same size.
Examining Figures 2.2 and 2.5, it is clear that not much néed® proved. We additionally

associatemplify statements with guessing nodes in the NBP. Just to be cleahow:

1. If unrestricted model prograrf solvesf in k steps, then there is a NBPwhich computes
f and is of sizék.

2. If NBP G computesf and is of sizet, then there is a unrestricted model progr&@mvhich
solvesf in k steps.

8The author is reminded of some friends who needed to trapdtgrof graphics images from San Francisco to Los
Angeles. They considered using FTP over the internet, bseoond thought realized it would be faster to put the data
in their car and drive, so they did. We are doing the same tharg: We physically move a bunch of DNA through the
virtual CPU, one gate at a time — but lots of data simultanigous
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We use essentially the same argument as above. However ngaywieat the set of test tubes
which a DNA strand passes through is the same as the set of mbdliee NBP whichcould be
activated by the associated input vector. Thus the outgtitube contains all strands whicbuld
cause the NBP to accept; i..'(1).

Augmented Model Write-Once Branching Programs

In this section we show that the class of functions which tgr@aented model can invert in a
given time are exactly those functions computed by a wrniteecbranching program of the same
size.

Examining Figures 2.3 and 2.5, itis clear that not much needte proved. We additionally
associat@appendstatements with writing nodes in the WOBP. Just to be clearstate:

1. If augmented model programi solvesf in k separationsteps, then there is a WOBPR
which computeg and is of sizek.

2. If WOBPG computesf and is of sizek, then there is a augmented model progwhich
solvesf in k separationsteps.

We use essentially the same arguments as above; the owgtutite contains all strands which
cause the WOBP to accept, i£:! (1), and additionally each strand maintains a record all writte
variables.

The results of Boneh et al. (1996a) can be used to show thatWg@R: as powerful as circuits:

1. If a circuit C or sizek solvesf, then there is a WOBE which computes’ and is of size
< 3k.

2. If WOBP G computesf and is of sizek, then there is a circuif which solvesf and is of
sizek.

2.2.4 Corollaries and Conclusions

We now have a theoretical handle on precisely what can antbtie computed by the restricted
and unrestricted models. First, by looking at the polyndreize complexity hierarchy, we can
separate the classes of functions solvable by the DNA models

Many useful results follow immediately from the literatuye branching programs. Here is a
brief sampler:

e poly-size BP are equivalent to log-space non-uniform®{Meinel 1989).

poly-size NBP are equivalent to log-space non-uniform NTH&ipel 1989).

poly-size circuitd® are equivalent to poly-time non-uniform TM (Wegener 1987).

thus poly-size BRC poly-size NBPC poly-size circuits, where the inclusions are believed
to be proper.

poly-size, constant-width BP are equivalent to log-dejpituds (Barrington 1986; Cai and
Lipton 1989).

®(N)TM = (nondeterministic) Turing machine.
0In this note we consider circuits where gates are fan-inttrary fan-out, and have arbitrary logic.
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function f,, || PARITY | DISTINCT MAJORITY SYMMETRIC

Laon(f) n? O(n?logn) O(n337) O(n*37)
n? Q(l(:;;n) Q(n?) Q(nloglogn)

BP(f) 2n — 1 O(nlog®n) O(2)

on — 1 Q(logjn) QB Q) eEn)
NBP(f) 2n — 1 O(n/?)
(l’é:;) Q(nlogloglog® n)
C(f) n—1 O(nlogn) O(n) O(n)

Table 2.1: Lower and upper bounds on complexities under knmmadels for various functions.

e J/C(f) = NBP(f) = BP(f) = L(f) (Razborov 1991}

° ’gf

Q

< BP(f) < L(f) + 1 (Wegener 1987f.

With each of these results there is typically an efficientudation (Pudlak 1987). Other
known linear simulations by branching programs includetéhsitate automata (FSA) and 2-way
finite-state automata (Barrington 1986).

As mentioned earlier, results on polynomial equivaleneesaaly of theoretical and not prac-
tical relevance. We would like more exact bounds on the cerifyl of implementing specific
functions. The literature on branching programs gives usessuch bounds, although admittedly
the knowledge is very incomplete. Some known bodhdisr a few functiond* are summarized
in Table 2.1.

2.2.5 Discussion

Do we gain anything by using themplify operation? Theoretically, yes, but very little. Contrary
to the suggestion in Lipton (1996b), the unrestricted maldels not allow us to invert functions
defined by circuits in linear timé. Furthermore, in addition to concerns about the religbitit

HC(f) is circuit size, L(f) is AON formula size, etd” < G meansF’ = O(G).

12Note this construction for formulas is better than that giireLipton (1996b).

3see especially Wegener (1987): pp. 76, 85, 143, 243, 247,426% Razborov (1991): pp. 50, 51; Boppana and
Sipser (1990): pp. 793-797. Note Razborov incorrectly gsithe BP lower bound on MAJORITY (Babai et al. 1990).
The upper bound comes from Sinha and Thathachar (1994). gier bbound on formulas for symmetric functions
follows directly from the upper bound Wegener gives for MARIDY. The upper bound on circuits for DISTINCT
comes from a simple application of SORT, followed by adjacammparisons; a better bound may be achievable. The
upper bound on NBP for symmetric functions uses a constmidty Lupanov for switching-and-rectifier circuits (see
Razborov (1991)); the construction also works for NBP.

14 et |x| denote the length ok and#x denote the number of 1's ir. Letm = TToggm |xi| = 2log, n and
DISTINCT(x1,...,xm) = 0iff 30 # j st x; = x;. MAJORITY(x) = 1 iff #x > % wheren = |x|.
PARITY(x) = 1iff #x = 1 mod2. f is SYMMETRIC if f depends only ofx. The lower bounds are for
almost all symmetricf.

51t appears that Lipton realized this shortly after disttibg his draft. He later characterizes his constructions in
terms ofcontact networkswhich are related to branching programs (Lipton 1995).
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PCR, we should realize that eaaimplify at least doubles the volume of DNA that we have to han-
dle. After just a few such operations, we could practicaliyumable to continue the computation.
For example, if we conclude for practical reasons té&tmolecules of DNA are the most we can
handle in one test tube, then we must be very careful not teeskthis limit when merging the
products of amplificatioff. The augmented model of Boneh et al. (1996a), however, hoids
the difficulties of theamplify operation and achieves inversion of functions defined bguis.
Another model which achieves inversion of functions defibgdircuits is the memory model of
Adleman (1996), which can be implemented via site-directedagenesis using the methods of
Beaver (1996) (who went further to show a full Turing machsimaulation).

Because circuits are such a concise representation for fuostions of interest, the aug-
mented model seems to provide an effective way to exploip#rallelism of DNA reactions to
solve inverse problems. However, for functions represkbtecircuits of size 1000, the required
3000 laboratory steps is still a lot to ask, especially siggeh affinity separation and ligation step
would take at least an hour if performed by a competent te@miaccording to standard proto-
cols. Itis not yet clear what the best biotechnology is fartbparationandappendoperations,
nor what their intrinsic error rates must be. Methods to iowererror rates due to misclassification
during separations (Karp et al. 1996; Roweis et al. in preg)ire multiplicative increases in the
number of steps, because each separation is repeated aimeglto make classification errors
rare.

2.3 0(1) Methods for DNA Computation

Abstract!’ This section introduces a more novel brand of DNA-based com-
puting wherein the problem to be solved is encoded entirelhé DNA se-
guences used, and a fixed sequence of experiments is pedfoviiesfocus on
the experimental technique afhiplash PCRas introduced in Hagiya et al.
(in press) for DNA computation, in combination with combtimgal assem-
bly PCRto generate structured libraries. We introduce a model ofipio
tation based on this technique based@@TO graphsin which a number
of NP-complete problems can be solveddnl) biosteps, including branch-
ing program satisfiability, the independent set problend, #we Hamiltonian
path problem. In addition, we propose a simple extensioh@gkperimental
technique that allows single DNA strands to simulate theatien of a feed-
forward circuit, giving rise to a solution to the circuit sdiability problem in
O(1) biosteps.

In an ingenious paper, Hagiya et al. (in press) introducexger@mental technique they call
polymerization stopand theoretically show how by thermal cycling, individuaNAR molecules
can compute the output of Booleanformulas (and-or-not formulas in which every variable is

180n a similar note, even the restricted model can sgleemputed by Meinel’s more general NBP model, simply by
using2™ times more DNA volume when there ate non-deterministic variables. This allows computationfiisient
as circuits, but at the cost of ridiculous amounts of DNA.

Results in this section also appear in Winfree (in press Hjariks to Masanori Arita, Daisuke Kiga, Kensaku
Sakamoto, Shigeyuki Yokoyama, and Masami Hagiya for dsions of their work; and to Len Adleman for suggesting
the HPP example and the name “whiplash PCR.”
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referenced at most once). Because each DNA molecule rigpltiforms hairpins so that it can
serve simultaneously as both “primer” and “template” fot@pped polymerase reaction, Adle-
man has dubbed this experimental technigigplash PCRHagiya et al. (in press) describe how
whiplash PCR can be used to solve the problem of leamaif@gyrmulas given positive and negative
data, and more recently Sakamoto et al. (in press ) has showrotiher NP-complete problems
can be solved with whiplash PGR

The motivation for whiplash PCR begins with the interprietaif DNA polymerase as an en-
zymatic Turing Machine implementing the simply COPY opierat Bennett (1982) goes farther
and imagines designing a set of enzymes to simulate thetapedd an arbitrary Turing Machine,
but these ideas were never implemented because of the Ityffafdesigning enzymede novo
But is the existing polymerase enzyme’s computational loiéipalimited to just copying? Re-
cently, Leete et al. (in press) realized that the hybridimabf primers in the polymerase chain
reaction (PCR) provides information-based control over @OPY operation, and that complex
computations (such as the symbolic expansion of deterrtsjpaan be carried out in DNA using
a series of PCR reactions. However, this is a very labonsite series of laboratory procedures,
and it has not yet been attempted experimentally. Hagiya éhagress) adds two key insights:
(1) that polymerase copying activity (which was initiategtbe primer sequence) can be conve-
niently terminated by a “stop sequence” in the template DAl (2) that if the3’ end of a DNA
strand serves as the same strand’s primer, then an indiid\ia molecule can be a self-contained
computational unit. It was shown how in a single reactiorthe@NA strand can independently
compute the result of a-formula, and how the problem of learningformulas fromN positive
and negative examples can be solved i®{iV) biosteps. (We use the term “biostep” to refer to a
single laboratory procedure. Many chemical reaction stapstake place during a single biostep;
in whiplash PCR, the many chemical reactions are sequencteebmal cycling.)

The DNA used in whiplash PCR has the fofistop;-new;-old;- - - - -stop,-new,-old,, -
head3’. When the3’ end (head) of the DNA strand anneals to a DNA sequeidg polymerase
copies the sequencew;, and the polymerase is stopped and dissociates upon erdognthe
sequencestop (for example, because the stop sequendg&G8~ and the polymerase buffer con-
tains only A, T, andG). The head of the DNA now contains a new sequence. Upon the nex
thermal cycle, the head can anneal to a diffei@dtlocation, and copy the correspondingw
sequence. We will refer to the basic DNA ufitstop-new-old-3’ as aframeand use the notation
(new old). In generalpoldfacewill be used when referring to DNA sequences, wiiiidics will
be used when referring to logical variables.

We describe by example the method given in Hagiya et al. @3grby which a single DNA
strand computes a-formulas during whiplash PCR. Consider thdormula f = (21 V Z3) A
(72 V z4). This can be translated to the decision process shown irrd=@y8, wherein variable
z1 is checked first; if it is false (written False, 0, ) then variabler; is checked, etc. Decision
processes of this form are known mnching program¥’; they have already arisen in the study
of DNA computing based on affinity separation (Winfree 199&ere we have the restriction that
each variable be accessed at most once; we call fhidwanching programsu-branching pro-
grams can represent more functions thaformulas; in the absence of this restriction, branching
programs are provably more concise than formiflas

8sakamoto et al. (in press ) use the tesutcessive localized polymerizatitmallow for the possibility of inter-
molecular reactions as well as intramolecular reactions.

Also known asbinary decision diagrams

20For example, the best known procedure for finding and-oferotulas implementing symmetric functions results
in formulas of sizeD(n**"), whereas branching programs of si2¢ n? ) can be achieved.

logn

www.manaraa.com



17

.x2
+
x4 / B
°
AN
( J ( J
out- out+ out- out+

Figure 2.8: (a) A branching program for computing fhéormula(z; Vz3) A(Z2Vx4). A possible
input would bez; = 1,250 = 1,23 = 0,24 = 1, which leads to output. The computation
follows a path through the diagram, and thus can only acaasasbles in the order prescribed. (b)
A branching program which does not correspond [efarmula.

The translation of an-variableu-branching program into DNA makes use of the+ 2 DNA
sequence$x;,x; ,x;,---,x;,out”,out™}. Each edge in the diagram, say theedge from
node: to nodeyj, is then converted into a DNA franie; x; ), which may be read as "if; is False,
checkz; next.” A recursive formula is given in Hagiya et al. (in pregsat converts any-formula
directly into a sequence of DNA frames, thegram frames To tell the DNA the values of the
input variables, we use additional frames of the fqmj x;), read as #; has the value True;”
these are thdata frames The data frames and the program frames are concatenateal sirigle
strand of DNA, with an initial3’ head sequence complementankto Figure 2.9 gives a full set
of frames used to implemeritand shows how the computation proceeds during whiplash PCR:
the head initially anneals to the data region to read theevafu:; in the next thermal cycle, the
head anneals to the frame representing the appropriateced@é node 1 in the program region,
to determine which variable must be checked next; in the oyple, the head anneals again to the
data region, and so éh Because the head might anneal to its previous locationlfintwcase the
polymerase is immediately dislodged by #tep sequence and nothing happens), the computation
proceeds at approximately 1 logical step per two therm@sydi this fashion, every DNA strand
computes in parallel, each containing its own data and its pregram.

In the inductive inference problem discussed in Hagiya etialpress), one starts with a
combinatorial library of DNA representing afl-formulas of a given size. In each iteration, a
positive or negative input example is evaluated by each Diand: DNA representing the input
is ligated to all remaining DNA strands, which are then eatdd in parallel using whiplash PCR.
Those DNA strands computing the correct output value aemetl, and the program region is cut
from the data and head regions in preparation for the nextdaf the iteration. After all input

2The restriction that each variable be used at most oncesaviseause the value of the variable itself, encoded in
DNA as,xii, is used to keep track of where the computation is in the a@etidiagram; if there were two nodes which
check variable;, then the computation could return to the wrong place in tlagrdm because there would be two
frames matching:.
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data program

(X4+ x4) (x2+ x2) (x3- x3) (x1+ x1) (out- x3+) (X2 x3-) (out+ x4+) (out- x4-) (x4 x2+) (out+ x2-) (x2 x1+) (x37xl-) x1

| | | | | | | | | | | | [
\ [ [ [ [ [ [ [ I I I I .
(x1+ x1)

(x2 x1+)

(x2+ x2) Step 3

(x4 x2+) Step 4

(x4+ x4) Step 5

(out+ x4+) Step 6

Figure 2.9: Probable secondary structures during the ctatipn of theu-formula (z1 V Z3) A

(T2 Vz4) On the inputl101. “Probable” is in the mind of the artist. Note that the tickrksadenote
the stop sequence; because tbehead sequence will never contain the complement tctbe
sequence, this will be the site of a small bulge in regionsdamashown as double-stranded.

examples have been processed, the only DNA programs thaimeepresent-formulas which
agree with all examples, and the inductive inference prabiias been solved i (V) biosteps.

By starting with a combinatorial library of DNA represergipossible inputs, Sakamoto et al.
(in press ) describe how whiplash PCR can also be used to stilee NP-complete problems, in-
cluding conjunctive-normal-form satisfiability (CNF-SRMertex Cover, Direct Sum Cover, and
Hamiltonian Path. In the next two sections, we develop simésults for general formula satisfia-
bility (FSAT), branching program satisfiability (BP-SAThdependent Set, and Hamiltonian Path.
We suggest thassembly grapformalism for the assembly PCR technique, and@@TO graph
formalism for describing computations possible by perfimgrassembly PCR and whiplash PCR
followed by a single affinity separation.

2.3.1 Solving FSAT inO(1) biosteps

Even though a single strand of DNA can only compute the resfudt ,-formula, it is possible
to solve the formula satisfiability problem if(1) biosteps — without the restriction that each
variable can occur at most once.
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Consider the Boolean formula= (21 V 72) A (Z7 V x3). It is a function ofn = 3 variables,
and it accesses one of them more than once; thus it is pdbamula. However, if we introduce
the new variables;; = z15 = z1, then the same function is computed by théx)rmulaf =
(z11 VT3) A (T12 V 3), With the additional constraint that; = z1,.

In general, iff is a Boolean formula im variables in which variable is accessed; times,
then we can construct g&formula f in 7 = > i, 0; variables, which computes the identical
function for input which is appropriately constrained. Sifieally, for eachl < i < n, we require
Til = ... = Tjgy-

We can use the biochemistry of whiplash PCR to computeutfiemula, and use the bio-
chemistry of hybridization to generate a combinatoriatdily of DNA representing all possible
inputs which obey the equality constraints. Following Adén (1994), the combinatorial library
consists of DNA representing paths through a graph. We ysetite assembly graphsn which
nodes are either black or white and are labelled by distincfies symbols, and directed edges are
labelled by symbol strings (possibly length zero) whoselsgimare disjoint from those used at
nodes. Each symbol represents a unique sequence of DNA.igmislgenerated for each edge
in the graph, using the sequences for the symbols of thenamigile, the edge, and the destination
node: since the graph is bipartite, edges are either fronewtides to black nodes (in which case
“sense” oligos are synthesized), or from black nodes toevhides (in which case the Watson-
Crick complementary “anti-sense” oligos are synthesizétipse oligos may be mixed in a single
test tube and full-length product may be generated uassgmbly PCR (Stemmer et al. 1995).
This reaction creates long “repetitive” DNA, which may thies cut at a restriction site to yield
defined-length product, and then made single-strandeded&ar path through the graph, the se-
guence of node and edge symbols on that path will be generateNA by assembly PCR; the
complementary DNA will also be generatédFigure 2.10 gives an assembly graph for generating
all DNA representing inputs whetg, = z15.

(Xirl xn)(xB X12) (X;r X) (x;r X3)
(%11 X11) (X2 X12) (x5 X3) (x3 x3)

Figure 2.10: An assembly graph for generating input to tmtda (z; vV 73) A (Z1 V x3). Up to
2n + 1 oligos are required, and additional symb@éisare used. For convenience, the nddeis
written twice. Since there will be a restriction sitely, this results effectively in paths from the
leftmost node to the rightmost.

Thus, for anyu-formula f, we can generate a combinatorial library of DNA representii

22This technique is preferred over annealing and ligation tuiés improved yield and accuracy; it was used in
Ouyang et al. (1997) to create a full library of 6-bit inpuliote that if the oligos are simply annealed, there are gaps in
the double-stranded DNA; these gaps are filled in by the peigse during assembly PCR. If, as in Adleman (1994),
ligation rather than assembly PCR is preferred, then amiwitioligos must be generated complementary to the frames
on the “anti-sense” strands. Of course, for either ligaboassembly PCR to be effective, careful design of the oligos
is required; see, for example Deaton et al. (in press).

2To be assembled by ligation, no gaps may be present in thes#iesé” strand; therefore all “anti-sense” edges
must be labelled by the empty string, or additional oligompementary to the single-stranded “anti-sense” regions
must be synthesized. A general assembly graph can be easisfdrmed into one suitable for ligation by either of
these two modifications.
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possible inputs satisfying the equality constraifis; = ... = z;,,}. After assembly of the
input DNA, DNA representingf can be ligated to the end of all input DNA, the whiplash PCR
reaction performed, and DNA whos¥ end isout™ extracted. This DNA contains the input
which satisfies the original formulA. We have solved FSAT i(1) biosteps (granting that the
number of thermocycles necessarily will scale with the sifzhe formula). The exact procedure
described above can also be used for the slightly more diffigfe-rSAT problem.

2.3.2 Combinatorial Sets of GOTO Programs

We would now like to generalize the techniques used to soB&TETo solve FSAT, a sequence
of three laboratory procedures was employed: combinatgeaeration of DNA by assembly
PCR, evaluation ofi-formulas by whiplash PCR, and selection of DNA evaluatiodrtue by
affinity separation. Here we introduce a new formalism tacdbe the computations which can
be performed in this manner; this formalism suggests skeptanizations and new applications
of whiplash PCR.

Our interest comes from the following simple observationn ®given strand of properly
constructed DNA, whiplash PCR can be considered as exgcatiBASIC program consisting
entirely of GOTO statements: e.g. the DNA fraifyg x;) can be thought of as “Liné GOTO
line 57, or justi — j. The special “line numbers” atl8TART = 1, ACCEPT = out™ and
REJECT = out™. The sequential order in which the GOTO statements appeassrtbt matter,
but no line number may appear on the left hand side twice. Bygusombinatorial synthesis to
create a huge number of different programs, and extractiegatcepting ones, we are able to
solve some interesting mathematical problems. We definenbic@atorial set of GOTO programs
using a bipartite assembly graph where edges are labeltessifgy with repetition) by GOTO
statements and nodes are labelled (uniquely) ffgmwWe will insist that all paths generate valid
GOTO programs, in which no line number appears twice on tfiehknd sidé*. This implies,
among other things, that the graph has no cycles.

Thus, we consider the following question: Given a graph digee above, is there a path that
generates a GOTO program that reacHé€sC' E P when started at liné? Call this theGOTO
graph satisfaction problepor GG-SAT. GG-SAT thus formalizes what can be compute@ (in)
biosteps by applying assembly PCR followed by whiplash P@dRadfinity separation.

As an example, we will reduce BP-SAT to GG-SAT. Three respumeasures of importance
are the number of paths through the graph (correspondinigetmiimber of DNA strands gener-
ated); the maximal length of the GOTO programs thus geregi@m@responding to the length of
the DNA strands); and the size, in number of edges, of the GOEPh (corresponding to the
number of DNA oligos that must be synthesized). Then, as shinwrigure 2.11(a)n-variable
m-node BP-SAT can be solved by creati2iyprograms of lengtl2m + n, using a GOTO graph
of size2(n +m). m lines of the program are fixed; the otherlines are generated in independent
blocks of; lines, with two possibilities for each.

This notation makes it obvious that the fixed portion of a GQjré@ph is redundant; we can
reduce each graph to a smaller one by following all the GOTQke fixed portion. The example
in Figure 2.11(a) reduces to just 3 nodes as shown in Figrt2.. Thus we get the improved
theorem thain-variable m-node BP-SAT can be solved by creati2y programs of lengthm
using a GOTO graph of siz.. Them lines are generated in independent blocks,dfnes, with
two possibilities for each. Because this decreases botletiggh of the DNA and the number

2DNA programs in which a line number appears more than once henléft hand side would execute
probabilistically.

www.manaraa.com



21

(2)

input region

program 'region

1—6 2—8,3—-10 4—12,5—14

i ;( r( }: 64)2:74)3:8—)5:9—)4: 0%%}1%5:12—)7 13—>+:14—>+:15—>7:

1-7 2-9,3-11 4-13,5—=15

(®) combined input and program region
152 25,34 4——,5-+
1-3 2—4,3-5 4——,5-+

Figure 2.11: Reducing BP-SAT to GG-SAT: the = 3,7 = 5 example. (a) The direct
construction, combining the assembly graph from Figuréd 2aad theu-formula program for
(11 VT2) A (T12 V 23). (b) The optimized construction obtained by following GO$tatements
in the fixed region of (a). All GOTO programs are of length 5.

of cycles to complete the program, this construction co@dnyportant for experiments solving
BP-SAT. It would be interesting to find general polynomiaté algorithms for “optimizing” or
“compressing” arbitrary GOTO graphs, in the sense that tve graph solves the same problem
but contains fewer paths and/or shorter programs.

input region program region

Figure 2.12: A GOTO graph for solving the Independent Seblra. Inputs are generated in
which exactlyk = 3 out ofn = 8 variables have value 1. The edge labels “0” and “1” in column
1 are shorthand for GOTO statements setting the value ofblarig; as in FSAT, variables which
are referenced more than once in the formula must be dupticaind the corresponding edges in
the graph will be labelled with more than one GOTO statemiote that concentration ratios of
the oligos could be adjusted to make all paths equally likiglyligation-based assembly, at least;
it is not so clear for assembly PCR).

However, we are still failing to fully exploit the expressiypower of the graph; so far we
have considered only essentially linear graphs. In theesxtrf circuit satisfiability, Boneh
et al. (1996a) commented that providing a regular languagmput to the circuit, rather than
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just {0, 1}*, could for some problems both reduce the size of the cirquit decrease the vol-
ume of DNA needed to solve the problem, and that the desirbdt input can be provided by
assembling DNA paths through a graph of sizel, whereM is the size of a finite state machine
recognizing the regular language. The same comment haldsfar BP-SAT. A simple exam-
ple follows from the ideas in Bach et al. (1996): the polynaintime 2SAT problem becomes
NP-complete when given the restriction that satisfyingigsohs must have exactly ones. An
instance is the Independent Set Problem, which asks, givem@irected graph and an inteder
is there a subset df vertices which have no edges among themselves? The 2-CRtfulfomwve
will use for this problem is

No=1(Ti, V T5,)
where the graph has eddes, j1] . . . [ie, je] @ndz; indicates membership in the independent set.
The formula simply checks that no two chosen vertices havedge between them. To solve the
problem, we ask for a solution to this formula in whiekactly% variables ard. This is done in
DNA by generating only inputs witk variables set. A GOTO graph for this problem is shown in
Figure 2.12; variables used more than once must be duglicatel the fixed GOTO statements in
the “program region” can be eliminated just as in the BP-Spfiroization.

Figure 2.13: Solving the Hamiltonian Path Problem: A grapfe) and its corresponding GOTO
graphG@ (b). This is Adleman’s example with 2 additional edges addgutevent pruning from
simplifying the GOTO graph to triviality. For conveniendgetnodes show only the vertex index
i, and not the full symbaP;, .

As a final example, we consider the Hamiltonian Path ProbldPR) solved in Adleman
(1994). Our procedure begins by converting (in polynomie) the original graphG into a
GOTO graphG'G. Supposes hasn vertices; therGG will have n? vertices, arranged in layers,
such that if there is an eddg j] in G, then in the GOTO graph, for eaéhe {2---n} there is
an edggp;, ., P;, ], labelledi — (i + 1) (with ACCEPT = n). Since we are only interested
in paths from vertex 1 to vertex, we prune the new graph to include only vertices which may
be reached fronP;, and which may reacl?, ; this dynamic programming problem takes time
O(n?) on an electronic computer. We now have the GOTO gi@ph as shown in Figure 2.13. If
G hasE edges, theit’G requires less thai? oligos.

Every path throughGG represents a length path throughGG from vertex 1 to vertexa. A
Hamiltonian path will contain, in some order, the frames

{1522—-3,---,(n—1) - ACCEPTY},
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and thus the GOTO program, as executed by whiplash PCR,idbed tcACCEPT. All other
paths will duplicate some frame and lack another — these G@DQrams will terminate and
never reacrACCEPT. Consequently, extraction of DNA containing tHe&’ C' EPT sequence
will identify the Hamiltonian path, and we have solved HPPifi) steps.

2.3.3 Single-Strand Computation of Boolean Circuits

Using whiplash PCR in the manner suggested in Hagiya ehgiréiss), where exactly one symbol
is copied in each polymerization stop step, gives eachag®aactly the computational power of a
GOTO program, and no more. However, whiplash PCR may givie sisand more computational
power, if copying more than one symbol is experimentallysfiele. The idea is this: when the
head of the DNA strand is being extended, it might not onlyngjgathe “state” of the head but
also add a new “program” frame.

Suppose for the moment that the variabtgsare encoded by;, x;",x; using A, T, and C,
and that the newgatevariablesy; are encoded byg;, g;", g; using exclusivelyd and7'. G andC
are respectively used for representing shep sequence and its complement. The polymerization
buffer still includesA, T, andG, but notC. The restricted alphabet used for the gate symbols
makes designing DNA sequences a more difficult ¥3gut it is necessary for the construction
we give below because now a gate symbol can be copied by pagetevice during whiplash
PCR.

In our original discussion of branching programs;+aedge from the node reading; to
the node reading:4 would be encoded by the framf&, x3). During biochemical execution
with whiplash PCR, a transition through this edge would ifiairpin formation with binding
to xI and polymerase extension copyisg, as shown in Figure 2.14(a). Our new proposal
involves copying more thar, during the polymerase extension, thereby memaorizing aarims-
diate result of the computation. In Figure 2.14(b) we shogvéRecution of arnhanced frame
(x4 (g4 85) (g5 &) x7). Here, the original DNA encodes for the “anti-sense” of ad/élame,
and thus the frame is inactive, bidden The two hidden frames present here are intended to
assign values to new variablgs andgs, but that assignment will not become effective while the
frame is still hidden. However, if the enhanced frame is aket, the hidden frames are copied as
“sense” frames onto the growir¥jend of the DNA, thus activating the hidden frames for potnti
future use. The final’ sequence of the DNA will still be&,, which will determine the immediate
course of the computation as usual.

At subsequent points in the evaluation, reference can be alok for the values of; or
gs- These values will be found by the head hybridizing to thelpaestivated frames and copying
to the GGG stop sequence — only now the head will not be hybridizing &"thput” part of the
DNA, but to part of the growing “head history” itself.

What is the use of activating hidden frames? The possililitfnemorizing intermediate re-
sults gives rise to a model of computation that we waite-once branching program®OBPYS.
Each node still has two outgoing edges, one labelexhd the other; however, edges may now
also have the additional labelsy;, which indicate that the variablg is to be assigned the value

ZAn expanded DNA alphabet, making use of artificial base pafiigh are both highly specific and can be incorpo-
rated by DNA polymerase, would allow greater flexibility imcgience design; indeed, Sakamoto et al. (in press ) reports
preliminary studies of using is6*and iso& (Switzer et al. 1993) in whiplash PCR. If this chemistry issessful, the
variablesz; andg; could be encoded usind, 7', C, andG; the stop sequence could be igG-iso-G-iso-G and its
complement isa'-iso-C-iso-C'; and the polymerization buffer could contaih 7', C, G, and isoé&.

%This model can also be used to describe DNA computation pae by a sequence of affinity separations and
ligations, as.in Boneh et al. (1996a).
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N
T, Ty
........ Yelele Kelele GGG
x4

X, Bs B g5 & xg + @ x7

........ Jetete cce cce —aaa 9o

Figure 2.14: (a) The polymerization stop step on a standauthd, where a single symbol is
copied, and its representation as an edge in a BP. (b) Thenpalyation stop step on an enhanced
frame, where two hidden frames are made active, and itsseptation as an edge in a WOBP.

+ or —. For implementation using whiplash PCR, a restriction ipased: again, a given variable
may be read at most once, and nodes may be labeled to readoamyamiabler; or any gate vari-
ableg;, so long as all paths to a given node have assigned exactlyatne to the gate variable
being read’. We call these restricted programsVOBP.

(@) . ()

o X1

x1 +gl -g1
+g2 -g2
+g3 -g3 x3

x2

+g6

Figure 2.15: (a) Input variables with multiple fan-out aentled by reading them once, and writ-
ing multiple distinct gate variables which may subsequyelodl read once each. (b) The translation
of a gate with fan-out 2 into a write-once branching programuires two decision nodes (only

one of which is guaranteed to be used). Two new gate variabéesritten. To translate an en-

tire circuit, first the input variables and then the gates Midae processed in linear order in the
branching program. Clearly, much more efficient transfaiare possible; for example, gates with
fan-out 1 need not be memorized.

u-WOBP are at least as concise as circita circuit withr inputs accessed in totaltimes,
andg gates with total gate fan-optcan be implemented injga WOBP using no more tham+ 2g
nodes and: + p gate variable®. The simple construction uses the building blocks shown in

ZIpgain, we have a probabilistic model if this restriction islated.

2The converse is also true: a circuit can be constructed ichvfisually) two gates are used for each edge in the
WOBRP to test if the edge was traversed during computatiomusEhcircuit with3m gates can be constructed from a
WOBP withm nodes.

2Just2g nodes angh gate variables are required if we allow preparing the inpitit wuplicated variables, as in the
FSAT construction.
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Figure 2.15. First, each input variahlg is read and duplicated int®; new variables, so every
subsequent read uses a unique variable. Then, each ciateiitsgprocessed in turn, and its output
is stored in a new gate variable (or variables, if the gatefameut greater than unity). The
translation of a small circuit is shown in Figure 2.16. Thae,can theoretically solve the circuit-
SAT problem in “one pot” using whiplash PCR.

In the case shown in Figure 2.16, a much smalla/OBP (essentially a BP) exists which
computes the same function, pointing out that our constmatf a x-WOBP from a circuit is
not the most efficient construction possible. However, forendifficult problems, circuits can be
much more efficient than branching progr&fhsThis means that a fixed size CSAT problem may
be more difficult than a BP-SAT problem of the same size.

One serious concern is that the problem of secondary steuatterfering with the progress
of the computation is made worse. First, “inopportune” ligization now involves much longer
subsequences, resulting in many thermocycles in which agress is made. Secondly, newly
activated frames are located in the “head history” regiomefDNA, which is likely to be involved
in secondary structure. Experimental investigation isinexgl to see how serious the problems will
be.

2.3.4 Conclusions and Future Directions

Like other forms of DNA computation, it seems that whiplasbRPcan't by itself compete with
electronic circuits unless there are significant advanedke control of the biochemistry. How-
ever, the computational power of whiplash PCR — in theoryggssts that “one-pot” biochemical
reactions have more potential for computation than preshothought. Conceivably, whiplash
PCR could be combined with other kinds of DNA processing hegistepwise or within the “one
pot” biochemical reaction. For example, we can considerifitadions of whiplash PCR wherein
DNA strands not only grow though polymerization, but as¢wink due to other enzyme activity
(e.g. restriction endonucleases or topoisomerases). A&n dpeoretical question is how to use
non-determinism during whiplash PCR: we have already gdsedi the case where the solution to
a problem is found by first using nondeterministic steps eadgkneration of the DNA, and then
using deterministic steps during the execution of the @ogrbut whiplash PCR could equally
well be used to perform nondeterministic steps by havingtiplalframes matching the current
head state.

%0As a simple example, an arbitrary symmetric function canrbglémented in a circuit of siz€(n), but the best
construction for branching programs requir@é n? ) nodes.

logn
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Figure 2.16: The translation of a 3 input, 6 gate XOR circoibiau-WOBP. (a) the circuit, (b)
the u,-WOBP generated by our construction, (¢) a much simpl¥OBP generated by hand.
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Chapter 3 Models of Computation by Self-Assembly

3.1 2D Self-Assembly for Computation

Abstract® This section informally explores the power of annealing gd
ation for DNA computation. (The following two sections wékplore these
notions more formally.) The first step of Adleman’s molecwdalution to the
Hamiltonian Path Problem involves the creation of a comtbima library of
DNA by means of directed self-assembly, followed by ligatidExperimen-
tally, DNA annealing can produce many unusual structuresdufition to the
usual B-form double helix, so we wonder if they can be useddizaatage
for computation. We conclude, in fact, that annealing agédtion alone are
theoretically capable of universal computation.

When Adleman introduced the paradigm of using DNA to solvaloimatorial problems Adle-
man (1994), his computational scheme involved two disstages. To solve the directed Hamilto-
nian path problem, he first mixed together in a test tube duérelesigned set of DNA oligonu-
cleotide “building blocks”, which anneal to each other amne lggated to create long strands of
DNA representing paths through the given graph. After tlgation stage, there ensuesteps
of affinity purification, whereby exactly the strands regmting Hamiltonian paths are separated
into a test tube (“the answer”).

Lipton (1995) subsequently refined the formalism for DNAs&a@ computation. He did away
with Adleman’s first stage, ligation, and replaced it by @y all computations with a fixed set
of DNA strands representing all-bit strings. Lipton expanded on Adleman’s second stage, se
aration, where he showed how all solutions to a given bodleanula f can be separated into a
test tube (“the answer”). The cost for the generality of thithod, even when using the improve-
ments of Boneh et al. (1996a), is indicated by considerigrapthe Hamiltonian path problem:
a straightforward methddtakes about® separation steps using Lipton’s approach, compared to
then steps used by Adleman.

We can conclude from this circumstantial evidence that mafdhe physical computational
power Adleman was exploiting was in his first stage, whereealing and ligation were used.
Lipton has explored the power of generalizing Adleman’sosecstage; we would like now to

IResults in this section also appear in Winfree (1996b). ¥kaa Paul W. K. Rothemund for the discussions at
the Red Door Cafe that lead to this work, and to Nadrian C. Seefor suggesting the use of the double-crossover
molecule.

%Let the graph have. vertices anc: edges;e < n”. The best boolean circuit | could devise uge&n log n)
gates to verify a Hamiltonian path. Another issue is thatefythn’s ligation stage requires the synthesis of about
O(n + e) oligonucleotides, which i©(n?) if e = O(n?); whereas Lipton needs only abolst log n oligonucleotides
to create his standard initial test tube of DNA. Howeverhteogy is becoming readily available for synthesizing
many oligonucleotides in parallel very quickly (seg.Chetverin and Kramer (1994)); the same cannot be said for the
affinity purification steps, which will likely remain expams. Comparing volume for a graph with/2 edges out of
each vertex, Adleman’s method uses volume roughly promatito ()™, while Lipton’s method uses a volume of
2mloe ™ since jt takes:log n input variable bits to specify a potential path.
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explore the power of generalizing Adleman’s first stage.

An immediate stumbling block is that the chemistry of animgpls not fully understood. At
best we can try to define some conditions under which theiozecare predictable, or at least
under which it is reasonable to expect that the reactionkidmmade to be predictable.

3.1.1 Some Basic Annealing Reactions

The fundamental chemistry of DNA is based on the double tagltkthe principle of complemen-
tarity. Each strand of DNA is a covalently linked polymer, avl each unit consists of a constant
part (the sugar-phosphate “backbone”) and one of eithemiaéethymine, cytosine, or guanine
(the bases A, T, C, G). Each strand is oriented; it has a 3' abdemd. When DNA forms a
double-stranded helix, the strands must be anti-paraltel, complementary bases align (A with
T, C with G); such strands are called Watson-Crick compleargrsequences. DNA also takes on
more complicated configurations, including triple helivagl helix, super-coiled, and branched.

A surprising number of possibilities are available, somavbich one may want, and many
of which one may not want. DNA is a particularly easy moledalevork with, because it has
evolved to be stable, typically unreactive, yet manipida®NA and protein, which have evolved
to serve many enzymatic functions, are far more reactivd,thus it is less easy to predict how
novel designs will behave in an experiment.

I will now comment on some reactions we may wish to exploiesgnted in cartoon fashion
(Figure 3.1). | will have to be more detailed with the reagtianvolved in the main thrust of this
paper, where their computation-universality is demonstta

(A) This is the canonical annealing reaction for DNA. Twaasitls with complementary sub-
sequences will form hydrogen bonds and hybridize at the mrajcbase pairs. The rate
constants for this reaction, which is reversible, depenthertemperature and salt concen-
trations, among other things. The melting temperatureyalwhich the complex is not
stable, depends upon the number of matching base pairs.

(B) A special case of the above, where the matched regiorreatthe ends. Note that the two
“sticky ends” (unmatched sequences) are available fonéunteactions with more DNA.

(C) The above reaction can be used to join two double-stchiidA molecules with comple-
mentary sticky ends. If ligase is present in the solutioe, iicks in the backbone of the
product will be repaired by the formation of a covalent borekulting in two continuous
strands.

(D) If mismatches occur flanked by matching regions, the unh@ DNA can bubble out.

(E) As above, except that the mismatch occurs here on bo#fs.sidhether this structure is
stable depends critically on the temperature and conde@ntraf salts. For example, a rule
of thumb is that the difference in melting temperature betwa perfectly matched structure
and an imperfectly matched structure is 1 degree per 1% nbisnfe/etmur 1991).

(F) This is the simplest DNA branched junction. The assenaflyhese structures consists
of course of sequential steps; only the end product is shoWris 3-armed junction is
probably floppy. However, how floppy it is depends upon thecegsaquence of base pairs
in the oligonucleotides.
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(G) This 4-armed junction is commonly known as a Hollidaygton. The two horizontal
strands tend not to be parallel, but skew. If the sequenoag &loth strands are homologous,
then a phenomenon called branch migration can occur, inhwthie crossover point drifts
right or left.

(H) This is the most complicated structure we will consid&e will put it to good use later. It
has been found to be fairly rigid and planar (Fu and SeemaB)19%ote the sticky ends.
Other related double-crossover junctions are possiblgemi#ing upon the number of half-
turns present in the helical regions. Seeman calls thiscutdeDAE” for double-crossover,
antiparallel helical strands, even number of half-turnsveen crossovers. “DAQO”, with an
odd number of half-turns between the crossovers, has amestiteg topological difference:
It consists of only 4 strands.

(A)

Figure 3.1: Some basic types of annealing reaction. Cumpgesent single strands of DNA
oligonucleotide. The half arrow-head represents the 3’ @nthhe strand. Small lines between
strands represent hydrogen bonds joining the strands. €heahstructure of the DNA is not
represented visually. Letters signify sequence motifs.aAdbove a letter signifies the Watson-
Crick complement of the motif.
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All of the structures above have been made in the lab and #treictures verified (see, for
example, Fu and Seeman (1993)).

We would ultimately like a theory which could tell us, giverset of oligos, a temperature,
and salt concentrations, what stable structures will faswvell as the kinetics. But this is a very
complex task!

3.1.2 Operations Using Linear DNA

We will first briefly consider what computations can be parfed using annealing and ligation
of strictly linear DNA molecules. Many of the possibilitibsive already been discussed by other
authors. For example, the techniques used by Adleman (184 for the construction of all
DNA representing strings accepted by a finite-state autarfaso known as a regular language),
using the annealing reactions (B) and (C) above. This is itapt because it allows us to create
a well-defined, somewhat interesting set of inputs on whiatompute in parallel. Beaver (1996)
has discussed how, in conjunction with polymerase, reast{®) and (E) can be used to make
copies of DNA with context-sensitive insertion, deletiamd replacement of substrings. In light
of these powerful operations, it seems plausible that a-fuwté linear DNA reaction could be
designed which performs universal computation.

3.1.3 Operations Using Branched DNA

There are many possibilities for computation using bradcdB®A. However, since the general
chemistry is not well understood, we will try to avoid ungnoled speculation by focusing on one
concrete possibility. The rest of this sectfasill concentrate on how to assemble a large “weave”
of branched DNA which simulates the operation of a one-dsimral cellular automaton.

Background: Blocked Cellular Automata

This section develops a formal model of computation calledked cellular automata (BCA)
We will later show how BCA can be simulated by DNA.

The operation of a BCA is diagrammed in Figure 3.2. As in theingiMachine model,
information is stored in an infinite one-dimensional tapbgeve each cell contains one of a finite
set of symbols. The computation proceeds in steps, whegimstep the entire tape is translated,
according to a given rule table, into a new tape. The traieslatccurs locally and in parallel;
pairs of two cells are read, and which two symbols are writtegoverned by look-up in a rule
table. It is of critical importance that the reading frame (whictls are paired together) strictly
alternates from step to step.

The set of entrieg (z,y) — (u,v)} is called the rule table, or the program, of the BCA. By
appropriately designing the rule table, the BCA can be madeetform useful computation. In
fact, BCA are computationally universal. A BCA with+ 3s symbols can simulate in linear time
the operation of a Turing Machine withtape symbols anglhead states — the proof is analogous to
that in Lindgren and Nordahl (1990). Thus we can concludeal&CA can be used to answer any

3The inspiration for this approach comes from the proof ofithdecidability of the Tiling Problem (see Griilnbaum
and Shephard (1986), Chapter 11).

“BCA (Wolfram 1994) are also known gsrtitioning CA (Margolus 1984) and as 2-body CA or particle machines.
They generalize the lattice gas model (Hardy et al. 197&) a8 commonly studied in two dimensions.

°If the table contains multiple entries for a given pair ofdegmbols, then the BCA is said to be nondeterministic.
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Figure 3.2: Operation of a BCA. The tape of a BCA, divided inédls, is shown at the bottom
right. Each cell contains one of three symbols: blank, bldok or white dot. The tapes at
successive time steps are stacked vertically above thal it@ipe. The inset, left, details the form
of a rule table entry, which governs how new tapes are created

guestion which can be phrased in terms of a computer prog&mall BCA have been designed
which sort lists of integers, compute primes, and many otieks.

A few more comments are in order concerning the abstract hoddéocked cellular automata.
First we consider the finite-size case. In any attempted@mphtation of a BCA, we cannot
actually construct an infinite tape. Thus boundary condgibecome important. We consider the
following cases:

(a) No update of boundaries. We start with a finite tape oftlei2g,; at each step the tape
become2 cells shorter; and aftet steps the computation can proceed no further. This case
is not universal.

(b) Inactive boundary conditions. Whenever there is an inagaell at either end of the tape,
it is copied verbatim onto the new tape. The tape remainsyaiilze same sizen(cells),
and thus there are only* possible tapes. As the computation must begin to cycle after
steps, this case is also not universal.

(c) Periodic initial conditions. On either side of the inmatls we specify a repeating pattern
of symbols. Starting with just one copy of the periodic blamk either side of the input,
computation proceeds as in (a), but if the tape gets too,sieradd another copy of the
periodic block to either side of the input tape and start h@jputation anefv This casés
universal.

(d) Self-regulated boundary conditions. Depending upoatwlymbol is in the boundary cell,
the new tape will either shrink (as in (a)) or expand by appemna new cell to the end of
the tape. This case is also universal.

Finally, a word on how an answer is obtained from the BCA. T&ia matter of convention.
Typically, when the computation is done, the answer is amitbn the final tape. But how is it
known when the computation is done? One possibility is thatape stops changing; the system
has reached a fixed-point. However in this paper we will atgrsthat a computation is done when
a special symbol, called tHmalting symbal has been written for the first time anywhere on the
tape.

By memorizing boundary cells, we can avoid re-computing @tis and make the computation more efficient.
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Simulation of BCA by DNA

We will now show how to use DNA to construct a BCA. In this sentiwe will optimistically
show what chemical reactions vepewill occur; in the following section we consider potential
difficulties in finding conditions such that they will in fastcur as we have described.

The DNA representation of the BCA tape is a little counteuitive, so we will explain by
example. Figure 3.3 shows part of the DNA molecule encodiaginitial tape (the input to the
computation). To each tape symbol corresponds a shortralijeotide sequence, which appears
in the initial molecule as a sticky end overhang in the appatg positions. The rest of the DNA in
each segment does not vary with content, and is chosen towizaxstructural stability. Note that
the reading frame is implicit in the structural form of the BNAlthough Figure 3.3 is schematic,
the 2D pictureis meant to imply that the whole DNA complex is roughly planahisTis critical,
and luckily, it is physically plausible.

BCA:

DNA:

SOC___SocC SO

Figure 3.3: Encoding the initial tape in a DNA molecule. Thguence of sticky ends in the initial
molecule encodes the initial tape of the BCA. Thus ‘A’ desadesymbol in the BCA diagram,
whereas in the DNA diagram it denotes the unique sequencasellassociated with that symbol.

There are a variety of ways to make the initial molecule. Nhb#g the initial molecule can
be thought of as consisting of several double crossovettipmg (from Figure 3.1H, with the
modification that the top and bottom strands are made to bedmnmamber of half-turns in length
— see Figure 3.6 for detail) linked together by pieces ofdirgelical DNA. The sticky ends can
be designed such that only this unique molecule will setasblé. Ligase can be added to make
the segments of the initial molecule covalently bonded.

We will now explain how the program, that is the rule tablethaf BCA is represented in DNA.
For each rulee.g. (z,y) — (u,v), we create a double crossover molecule whose sticky ends on
one helix arez andy, and on the other helix andv® (see Figure 3.6). All such rule molecules are
added to the solution containing the initial molecule. Asvgh in Figure 3.4, what is required for
computation is that rule molecules will anneal into positiband only if both sticky ends match.

Eventually, a triangular lattice of linked DNA will form, siulating a triangular region of a
BCA corresponding to boundary conditions (a) or (c) in Smttd.1.3 above (see Figure 3.5).
Boundary conditions (b) and (d) can be simulated by usingiaprile molecules for the edge of
the lattice; the details are not presented here. Note tluétlesel of the lattice has a single strand

"Itis easy to see that sticky end sequences can be chosenthsisame techniques as Adleman (see Section 3.1.2),
such that a periodic initial molecule will form, creatingrjmelic initial conditions as mentioned in Section 3.1.3 (c)
above. Similarly, a regular language of inputs could be niagerallel.

8The lengths of all parts of the rule molecules are chosen obstant for simplicity, but it is conceivable that by
using variable length as well as sequence to encode syngveler specificity could be achieved.
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Figure 3.4: Rule table molecules assemble into the lattivée see free-floating rule table
molecules above and the initial molecule at the bottom (bothespond to the BCA in Figure 3.2).
A rule table molecule, with sticky ends and(, is about to anneal to the initial molecule. At the
left, a rule molecule which matches onlyAwill ultimately not stick. Note that the rule molecule
with sticky endsA and A will also not stick, because the orientation of its strari&iiong; this
rule molecule will be useful on alternate levels of the tati

of DNA which travels the entire length of the lattice at thexdl, and where the coded symbols
occur in the sequence in in which they occur in the BCA at time

Level 2

Level 1

<::i> CZ;("""*‘* Level 0

Figure 3.5: The DNA lattice resulting from a finite initial hegule. At the chosen annealing tem-
perature, which is above the melting temperaturesfbase-pair annealing but below the melting
temperature foRs base-pair annealing, no more rule molecules can stablgtattethis structure.
However, if the bottom level (the initial molecule) were extled, then a larger triangle could
form. s is the length of the sticky ends in the rule molecules.

Finally we ask, how can we access the output of the computfitis breaks down into two
guestions: How do we knowhenthe computation is done? Andhatis on the tape at that point?
There are many possible approaches to take; here we willyreketch one. As mentioned above,
we will consider the computation to be done when a specitingasymbol is written on the tafe
In DNA, this corresponds to the special sticky end motif gdircorporated into the lattice. When
this occurs, the motif will be present as a double-strandebkoule for the first time, and this site

®At this point other parts of the tape will typically “not knéwthat the computation is done, so the lattice will
continue to grow. However, it is also possible to design #ikitar automaton such that all cells go into a special state
to halt computation at the same time (the Firing Squad Prnopéeee.g. Yunes (1994)), thereby allowing us to design
linear pieces of DNA which fit into the gaps at the final leveltlod lattice, so that it cannot grow further. This may
make extraction of the final tape configuration easier.
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can be be chosen as the recognition domain for a bindingipt8tevhich could, for example,
subsequently catalyze a phosphorescent reaction, tutimngolution blue. To determine what is
“on the tape” at this point, it is necessary to extract thglsiistrand of DNA corresponding to the
final level of the BCA. To do this, first add ligase to covalgribnd all the annealed segmeéhits
Then add resolvase to break all the crossover junctforisnally, heat to separate the strands, and
use affinity purification to extract the strand containing talting motif. Amplify and sequence
that strand however you desire.§.via PCR and standard sequencing gels).

To summarize the model suggested here, a computation wontegd as follows.

1. First, express your problem via computer program. Cdribat program into a (possibly
nondeterministic) blocked cellular automaton.

2. Create small molecules (H-shaped and linear) whichassémble to create the initial
molecule (or initial molecules, if search over a FSA-getestaset of strings is desired).
Add ligase to strengthen the molecule.

3. Create small H-shaped molecules encoding the rule tablgfir program.

4. Mix the molecules created in steps 2 and 3 together in aubst and keep under precise
conditions (temperature, salt concentrations) as the Datifce crystallizes.

5. When the solution turns blue, ligate, cut the crossovains, extract the strand with the
halting symbol.

6. Sequence the answer.

Analysis and Estimates. Will it work?

Let’s begin the analysis optimistically. The above cortgtan is just one implementation possible
in a general class that might be called “crystal computatibnin this class, we design a system
where we can tailor-make the energy (and hence free enesgg)fanction of the configuration.
We design it such that the lowest energy state (or in our daselowest free-energy state at a
given temperature) uniquely represents the answer to ampatation. This is closely related
to the approach taken by Hopfield (1982) in his seminal workiearal networks. In our case
the lowest energy configuration is one where every rule nubdelas all four sticky ends bound.
Given the presence of the initial molecule, this can onlyundtthe computation proceeds as
desired.

The above analysis is a simplification that fails to take cuosideration many aspects of the
proposed implementation. For example, it completely igadhe dynamics involved; one simply
anneals at a slow enough schedule, the argument goes, aodyste is the result. Whereas in

1The protein must have an active bound form, and inactive unébdorm. Furthermore, we must be sure it doesn’t
bind to rule molecules in the solution.

it is a valid concern that ligase may not be able to bind to anyte outermost strands in a lattice. It may be better
to reverse the order of the ligase and resolvase steps.

12plthough a resolvase has been shown to cut crossovers idadoudssover molecules (Fu et al. 1994), it is un-
known whether the enzyme will be functional on the innerrglsain the lattice. However, the enzyme may be able to,
at diminished speed, work from the edges in.

B3It has been suggested that we shouldn’t use the term “ctybetause it has a well-defined special meaning. At
best, our constructions yield “pseudo-crystals”, becauseuseful computation is aperiodic. We beg the reader ® giv
us slack in using this term.
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fact the crystallization proceeds at the edges only, adegt kinetics that significantly influence
the result.

Can a temperature be found such that two sticky ends boundheswhile one sticky end
bound is unstable? In other words, I8f, 77, andT, be the melting temperatures for a rule
molecule fitting into a lattice slot where respectively Oatd 2 of the sticky end pairings match.
We want to keep the test tube at a temperaflireuch thatly < 77 < T < T,. This should
be possible, but how large is the difference betw@&erandT,? Although this is unknown for
the particular molecules we use, we can get some idea byrigaiti what's known about linear
DNA annealing. For example, under standard conditions 2@-pair oligonucleotides (repre-
senting rule molecules with two length 10 sticky ends bound)t at70° C, while 14 base-pair
oligonucleotides (representing rule molecules with omig éength 10 sticky end bound, and the
other matching partially) melt a8° C (Wetmur 1991). 7 = 65° C would then discriminate
the two cases. However, the analogy of rule molecules with $eparate binding domains to
variable-length oligonucleotides with continuous birgd@domains is questionable.

A definitive answer to “But will it work?” requires a chemistknowledge and actual experi-
ments. But we can immediately bring some more concerns . li§ince | do not have answers
to them, | will merely mention them in passing. First, to read an answer of more than one bit,
our implementation requires ligating the rule moleculed aumtting them with resolvase. It is not
at all clear that, in the crowded confines of the DNA latticéher ligase or resolvase will have
room enough to perform its job. Second, it is possible that, at a low rate, incorrect ruldisbe
incorporated into the lattice. If this occurs, the compotais ruined. It is thus not clear at this
time what yields of correct computation are to be expectad vehether a means could be devised
to separate the good from the bad. It is additionally corad#és that stable structures form in the
solution unconnected to the initial molecule. For examfidey rules molecules could connect
in a stable “diamond”; we might think that these complexel avily rarely be formed, because
the intermediate steps are unstable (only one sticky end joiolecules), and for similar reasons
they would grow slowly. However, they and other types of gmug connections and tangles could
form, ruining the computation. A final concern is that theraynibe some systematic molecular
stress or strain that comes into play when building a largstat, and that beyond a certain size
tearing would result. All these issues, and surely othexsed/e more attention and study.

If for the moment we suppose that the implementation opgiaierectly, let us consider what
advantage would be derived. Take the following with a budkesalt: First, a small rule molecule
(see Figure 3.6 for a close-up) consists of 50 base-paird\@f,Bufficient for sticky ends of length
5, which gives usz 10 symbolg®. That's 33 K Dalton / rule molecule, with a size probably less
than 20 x 44 x 85 Angstroms, for 3 bits / rule molecule.

Assessing speed is even more speculative. Suppose wempai@mputation of a0000-cell
BCA with inactive boundary conditions, and compute f6000 time steps. Suppose it takes 1
second for arule to fitin when its slot is exposed. Sincet® slots are simultaneously exposed,
all should be filled in approximately 1 second on averages Tgads to a rough estimate of 3 hours
for computing thet 00002 cell lattice. Using 1kg of DNA, we could assemilg™ rule molecules,

YIf there is an angle between the plane of the lattice and amallecule which has just fit in place, then in our
construction, an opposite angle is formed when a rule médefits into the subsequent layer. Consequently, the 2D
lattice, rather than being perfectly planar, folds back torth like a paper fan, which we call a “corrugated” lattice.
The corrugated lattice exposes more of the double helixdtran each rule molecule, possibly making the strands
more accessible to ligase but making the crossovers lesssibte to resolvase.

5We optimistically require only 2 mismatches between seqgesmepresenting differing symbols. We also require
the complement of a symbol’s sequence does not code for acdyantal that every code sequence has 3 C-G bonds and
2 A-T bonds, for more consistent melting temperatures.
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Figure 3.6: Detail of a small rule molecule. This is the seslIDAE/even style rule molecule
possible. It has sticky ends of length 5, and internal regidength 10. Every base pair is shown.

that is,10'" such calculations in parallel. That leads to a total@f operations per secoHt
There is no lab work to be done during this the major stage éncttmputation. Of course time
would also be required in the input and output stages.

Open Questions, Extensions, and Other Speculation.

In addition to the essential question of whether the ideaselan be made to work in the lab,
there are many other issues to be investigated.

How energy-efficient is crystal computation? It is interesting to note that what might be
called the computation proper (crystallizing the DNA latli theoretically requires arbitrarily little
energy, as will be argued in the following sections. Of ceuesgreat deal of energy may be used to
heat the mixture up, to pulse the temperature to dissolvectiefor to apply other error-correcting
mechanisms. Furthermore, the input and output stagesreegynthesis and analysis of DNA
molecules, and thus also much energy. Our proposal is ppghiy most nearly implementable
example of the principle that computation is free, but ingtl output are costly (Bennett 1973).

Why use the DAE structure for rule molecules? Clearly the particular choice of molecule
is not of intrinsic importance to the idea of this constranti The logical essence is to have an
“H"-shaped molecule with four designable sticky ends. Atitmplest, one could imagine making
the “H” out of two chemically cross-linked strands of DNA @eire 3.7a). Another alternative is
the slightly larger single crossover Holliday junction. wiver, it is important for the construction
of the lattice that the two linear pieces in the “H” be plartdglliday junctions have been shown
to prefer a (flexibles0° skew angle (Eis and Millar 1993). The chemically linked sttsimag-
ined above have not yet been characterized. The reason wesgrdhe large double crossover
molecule$’ is that they have already been characterized in the lab anthaught to be rigid

*This compares to 300 GFLOP& (10'* basic operations per second) attainable by the best modpemcomput-
ers,e.g.a 7000 processor Intel Paragon. Of course, the “operatimesiompare are apples and oranges.

"Ned Seeman suggested we consider double crossover malegsilan improvement over the more awkward
branched junction constructions we were originally coesith.
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Figure 3.7: Alternative Topologies for 2D Lattice. (a) Rutelecules based on cross-linked
DNA. (b) DAE rule molecules with an odd number of half-turrstween junctions on adjacent
molecules. (c) DAE rule molecules with even-length spaciiay DAO rule molecules with odd-

i AQ rule molecules with even-lengticema
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(which may help prevent tangled lattices) and planar (FuSeeiman 1993). We chose DAE in
preference to other topological variants of double crossawlecules, such as DAO, because the
topology of the rule molecule leads to a different “weave”DflA strands in the lattice (Fig-
ure 3.7bcde). We prefer to have a single strand which, if lemity linked, runs along an entire
level of the lattice, thus encoding the BCA state for thaktistep.

Why a 1D BCA? Why not build a 3D lattice to simulate a 2D BCA?We started with 1D
BCA because they can be immediately explored used existiy t2chnology. Two dimensions
offers several advantages, however, such easier desidifiacdér computations. Perhaps more
importantly, in higher dimensions it becomes easier togtesiror-tolerant rules (Gacs and Reif
1988); intuitively, point defects in 2D can be filled-in froatljacent correctly-computed cells,
while in 1D a point defect severs communication betweendfteahd right sideOpen question:
Can the DNA rule molecules be modified so as to build 3D DNAcés? Speculatively, one
could propose a variant of the double crossover Hollidaytion, the “multiple strand double
crossover junction” (Figure 3.8), as a means to implementéiad-4, write-4 operation required
by 2D blocked cellular automata (see e.g Toffoli and MargdLe87), Ch. 12). Unfortunately,
the proposed building-block molecule has not yet been sgithd.

f2(A,B,C,D)

Figure 3.8: A possible 3D lattice of DNA for simulating 2D BCPour DNA double helices may
be bound together by crossover junctions (left). Stickysesiekermine 2D BCA rules as the rule
molecules assemble in an alternative cubic lattice (right)

Potential uses in nanotechnologyHere we have suggested an approach to molecular compu-
tation via programmable self-assembly. Programmablesssiémbly may have other applications.
Open question: Can cellular automata generated latticesided to define ultra-high resolution
electronic circuits?0One possibility, along the lines investigated by Robinsath &eeman (1987),
would be to conjugate nano-wire onto individual rule molesusuch that when the rule molecules
fit together, an electrical circuit is formed. This propodéflers from Robinson and Seeman’s sug-
gestion in that whereas they envisioned a periodic lattfdeentical memory cells, we suggest
that cellular automata rules could be used to build more ticatpd circuits, either in 2D or 3D.

Why use DNA at all? The principle of computing via crystallization is not rested to DNA.
Open questioff: Can non-DNA-based molecules could be used to design desimputations
carried out on the surface of a growing crystal?

185 ggested by Stuart Kauffman, private communication.
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3.1.4 Comparison with Other Approaches

Perhaps the most practical suggestion for universal caatipatvia DNA is that of Boneh et al.
(1996a). Their approach makes straightforward use of weleustood laboratory techniques for
manipulating DNA. They are able to simulate nondetermimizbolean circuits, which seems very
efficient for some calculations, and which gives them ursgbcomputational ability. Because
circuits allow non-local interactions of variable, cirtaican be very compact. However, it should
be pointed out that the computation requires a lab techmitissequence operations on multiple
test tubes; the logic of the program being computed is eatémthe DNA, which is used as a
memory. Small scale computations could be immediatelyrgdted with reasonable chance for
success; however due to the weakness of single-stranded doAther factors, it is not clear
how this approach will scale.

Other authors have proposed DNA implementations of Turiragivines directly€.g. Beaver
(1996), Smith (1996), Rothemund (1996)). The approachesfuam using PCR to relying on
restriction enzymes. These approaches show promisepgltitbe reliability and efficiency of the
steps is unclear. Furthermore, single-tape, single-heaithd Machines are particularly cumber-
some logically; circuits will typically compute the samen@ilion in many fewer steps (and single
steps take comparable time in both systems — on the orderuw$holn short, although they are
of theoretical interest, it is unlikely that anyone will matly go into the lab and solve problems
this way.

Our hypothetical cellular automaton implementation d#ffen a number of ways: First and
foremost, our proposal is a “one-pot” reaction. Dump in thie molecules encoding your prob-
lem, and all the logic of the computation is carried out aatoously. No lab work is involved.
Furthermore, in addition to running a massive number of asatons in parallel, each cellular
automaton performs its own computation in parallel — thuly fxploiting the parallelism avail-
able. The major and significant drawback of our proposalas ithmakes use of chemistry which
is not yet fully understood, and thus going into the lab to dm@putation this way would be a
real technical challenge.

The main conclusion of this paper is that annealing anditigationemay be sufficient for uni-
versal “one-pot” DNA computation. Whether the particulaheme envisioned here can be made
to work in the lab is a matter for further research. In any c#tse clear that better experimental
characterization of the chemistry of annealing is requigetl may open up new possibilities for
DNA based computation.

3.2 Graph-Theoretic Models of DNA Self-Assembly

Abstract®® In this paper we examine the computational capabilitiesriat
in the hybridization of DNA molecules. First we considerdhatical mod-
els, and show that the self-assembly of oligonucleotidés linear duplex
DNA can only generate sets of sequences equivalent to relgniguages. If
branched DNA is used for self-assembly of dendrimer stnestuonly sets of
sequences equivalent to context-free languages can bevadhiln contrast,
the self-assembly of double crossover molecules into twtedsional sheets

1%Results in this section also appear in Winfree et al. (ing)t€Bhanks to Dan Abrahams-Gessel for suggesting the
context-free grammar result.
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or three dimensional solids is theoretically capable ofrersal computation.
The proof relies on a very direct simulation of a universalss| of cellular
automata.

A fundamental property of DNA is that, under the right coratis, Watson-Crick complemen-
tary regions of single-stranded DNA will hybridize and foendouble helical structure. This prop-
erty, in vitro and in vivo, can lead DNA to assume a remarkatiersity of geometric fornts.
Under certain simplifying conditions, the behavior of hidimration is sufficiently predictable to
be considered as a computational primitive; i.e., a fumctrom initial oligonucleotides to final
supramolecular structures is computed. The computatiaspécts of self-assembly were ex-
ploited for the first time in Adleman (1994), where linearfssedsembly was used as a step in
solving the Hamiltonian Path Problem. When the self-as$geofliree-like structures takes place,
due to the presence of branched junctions, a slightly moneedal computation results. We re-
view a two dimensional generalization capable of universahputation, as suggested in Winfree
(1996b), and also suggest a concrete three dimensionassdimbly process.

In order to understand the computational implications ofADiN/bridization, we will first
consider a highly abstracted mathematical model. The phlsiystem we would like to model
can be described as follows:

Synthesize several sequences of DNA. Mix the DNA togethesolntion. Heat
it up and slowly cool it down, allowing complexes of DNA to for Chemically or
enzymatically ligate adjacent strands. Denature the DNsra@nd ask, what single-
stranded DNA sequences are now present in the solution?

A proper answer to this question is beyond our capabilityg eealistically detailed models
might not be enlightening regarding the logical essenceltfassembly. We therefore investigate
very simple models, which, nonetheless, are sufficientlyistic that translation into real world
scenarios should be direct. We will consider a number of @rigs which DNA self-assembly
may be postulated to obey, and we will analyze the compuialticapability and the limits of any
self-assembly process which obeys those properties.

Informally, the properties we consider are:

1. Constant Temperature. The number of base-pairs required for the stability of DNAneco
plexes does not change during the course of the self-asgertt thus don't consider
annealing, where at high temperatures only long regionshybridize but later at lower
temperatures even short regions can hybridize, but ratleemadel a “constant tempera-
ture” process.

2. Perfect Watson-Crick Complementarity. Hybridization only occurs between sequences
with perfect Watson-Crick complementarity. Hybridizatiof mismatching sequences, or
that which creates bubbles, branched junctions, tripleés| and other unusual structures,
is not considered.

3. Permanent Binary Events. All self-assembly interactions occur between two compexe
at a time, and no more. These interactions are exclusivadyidigations, joining two com-
plexes together. Furthermore, in the model once two coregl@in, they never dissociate.

20n vivo, not only is there single-stranded and double-steshDNA, but branched junctions are formed during
recombination, and trypanosomes maintain complex nesvofkircular DNA within which RNA editing occurs.
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4. No Intramolecular Events. A DNA complex which has self-assembled will not interact
with itself, for example by cyclizing. Note, however, thainse physically intramolecular
interactions can be modeled as a part of a binary event, agsdied below.

5. Single vs Multiple Binding Regions per Event. We will consider two cases: either (a)
each binary hybridization event creates a single contigéatson-Crick region, else (b) the
binary events may result in the formation of several physiceparated hybridized regions
between the two complexes. The latter case is meant to mbglsigal situations where an
intermolecular hybridization is immediately followed by @tramolecular hybridization.
The case we are interested in is discussed in Section 3ge3-{gure 3.15).

6. Specified Classes of Initial ComplexesBecause of our constant-temperature assumption,
it becomes useful to assume that some complexes have afieradsd prior to the stage of
self-assembly which we will consider. Later in the paperwileconsider initial complexes
which consist of (a) oligonucleotides, (b) duplex DNA witlicky ends, (c) hairpins with
sticky ends, (d) three-armed junctions with sticky endgsd¢eible crossover molecules with
hairpins and sticky ends, and (f) arbitrary complexes.

Properties (1), (2) and (3) are used primarily for logicahpgiicity. If Property (4) were
changed to allow intramolecular events, it is possible swahe of our results would be slightly
modified. We will analyze how our results change under diffiérchoices for Properties (5) and
(6). In Section 3.2.5, we impose an additional property isheorto incorporate geometrical con-
siderations for lattice self-assembly.

3.2.1 Language Theory and Grammars

Before we present our model of DNA self-assembly, we shooltiroent on what it means to
compute by self-assembly. As mentioned above, the typase ¢s that one starts with a small
variety of synthesized oligonucleotides, and one ends gvitht variety of self-assembled strands.
The resulting strands are not random; they have certaineptiep that derive from being formed
from the original oligonucleotides according to certaitesiof hybridization.

An analogous situation arises in formal language theorychvhas been well understood for
many years. There, rather than test tubes of strands, ontergs$ted in sets of symbolic strings,
and in methods of generating them. We will sketch the basies;Hor a full development see
Ginsburg (1966).

An alphabetis a finite set of symbols, for examplel, C, G, T} or{0,1} or{z,y, z, (, ), +, *}.

A string over an alphabet is a finite sequence of symbols from the gil@mabet, for example
TATAA or101011 or (z + y) = z. A languageis a well-defined, possibly infinite set of strings,
for example{ all strings over{C,T'} of length70} or { all prime numbers, written in binary or

{ all well-formed formulas ovefz,y, z, (, ), +, — } }.

Although one cannot write down each and every string in amitefilanguage, one can ask
the membership question: is stringin languageL? Note that if the languag€ contains all
bit stringsz for which function f(x) = 1, the the membership question is equivalent to boolean
function evaluation. The membership question may be handeasier to answer, depending:en
and L. Formal language theory goes to great pains to classifyulagpes according to how fancy
the computer must be to answer the membership problem. Wehsttee fundamental result due
to Noam Chomsky, known as the language hierarchy. This megjfiormalizing the specification
of languages by generative rules.
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A rewriting rule z — y, wherez andy are strings, specifies that a string= axzb can
be rewritten to produce the new string = ayb. A grammarG is a collection of rewriting
rules together with a division of the alphabet into two greiugrminal symbol&ndnonterminal
symbolswhere only nonterminals appear on the left hand side ofitiegrrules. Each grammar
uniquely defines a languadg; as follows: the string of terminalsis in L; iff it can be obtained
from the special nontermindl by the repeated application of rewriting rules in some ofdalied
aderivation).

Grammars may be classified by what kinds of rules they use. iVédeegamples of the three
main classes below:

Regular grammars use rules of the formd — pB andA — p where A and B are nonterminal
symbols ang is a string of terminals. Languages generated by regulanigrars are called
regular languages. For example, consider the regular geangip = {S — 05,5 —
17,8 - 0,7 — 0T, T — 15,7 — 1} where 0 and 1 are terminals. This grammar
gives rise to all bit strings with an even number of 1801011 € L, becauseS —
1T — 10T — 101S — 1010S — 101017 — 101011. Note that during the derivation
we always have a single nonterminal at the right, where allattion takes place. Despite
their apparent simplicity, regular languages have fourtéresive use in pure and applied
computer science, perhaps because their membershipa@uesti always be answered by
an exceedingly simple abstract computer known as a finite stachine.

Context-free grammars use rules of the formd — P where again4 is a nonterminal symbol,
but now P is an arbitrary string of terminals and nonterminals. Laamps generated by
context-free grammars are called context-free languag&snsider the grammaf, =
{§—>85+88S—-> MM-—>MxMM — (S),M - z,M - y M — z} where
the terminals ardz,y, z, (, ), +, *}. This grammar gives rise to well-formed formulas.
(x+y)xz € L, becauseS - M — M« M — M xz — (S)*xz = (S+S5)*xz —
(S+M)xz— (S+y)xz — (M +y)*xz — (x+y) *z. Note that whereas it is impossible
to generate regular languages whose strings all have lmgerstructure, one can generate
long-range “nested” structure in a context-free languader-example, every parenthesis
must be matched in the formulas above. Context-free laregiaglude regular languages.
The membership question for context-free languages cam&sesed by a slightly more
complex machine known as a nondeterministic pushdown aattwm

Unrestricted grammars use rules of the forrd — P where nowA may be an arbitrary strings
of nonterminals, and is an arbitrary string of terminals and nonterminals. Laaggs gen-
erated by unrestricted grammars are calieclrsively enumerablinguages because they
include every language which can be generated (enumerbyedhpy computational pro-
cess (recursion). Recursively enumerable languagesdedantext-free languages, regular
languages, and much more. They are as fancy as you can getry/iagple example:

consider the alphabe{tS‘ LR, B, B,w,w,0, 1} and the grammaGp ={S—->18 —

LRL—)LB L—)lR—)(ERR—)l BB —>VT/V_1>/EH§ — 0, Bw —)EE}EV(T/ —
i s e i Gy

1LLWB — BB,WB — LLww — Ww,ww — 0} where the terminals are 0 and 1.

Th|s gives rise to the rows of Pascal’s triangle mod 2. Theltrow 101 € L, because
S—LR—LBR—LEBR— 188 R— 10R — 101. Later, we will make use of a
subclass of unrestricted grammars equivalent to blockida@aeautomata, which generalize
the example and which are still capable of generating allrgeely enumerable languages;
that is, they areiniversal A surprising consequence of universality is that the mestbp
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question for recursively enumerable languages is somstimpossible to answer!

3.2.2 DNA Complexes and Self-Assembly Rules

Grammars turn out to have a close relationship to the selfrably models we discuss here.
However, to make this relationship precise, we define ourehfmimally.

A DNA complex! is a connected directed graph with vertices labeled fiotnC, G, T},
edges labeled fromibackbone, basepair}, with at most one incoming and one outgoing edge of
each type at each node (thus at most four incident edgey tatal where for every base pair edge
x — y there is a reciprocal basepair edges x. Furthermore, all base-pairing in a DNA complex
must beWatson-Crick that is, every basepair edge must be within a subgraph ig@rioto one
of the 10 given in Figure 3.9a.

A C GT CC T AT G A GA C

® o » 4 o » -4
® 0o » 4 o »

(©

Figure 3.9: Some DNA complexes. Solid lines represent bam&ledges; each dotted line rep-
resents a pair of reciprocal basepair edges. (a) The 10 W&sok subgraphs. (b) The valid
ligation site. (c) A strand, a duplex with sticky ends, a pimrwith a sticky end, a 3-armed
branched junction, and a DAO double crossover (DX) unit wtibky ends.

A DNA complex (justcomplexfor short) represents several DNA polynucleotides bound to
gether by Watson-Crick hybridization. Note that this reygmtation supports a rich variety of
DNA structures, but structures such as triple helices amesimg; similarly, it is lacking notions
of geometry and topological linking. Also, we must be cardfiecause it is possibly to specify
physically impossibly structures.

It will be useful to introduce a few examples of DNA complexskown in Figure 3.9c. A
strandconsists of a chain of backbone-connected nodes, with rephasedges. Strands may be
either linear or circular. Aluplexconsists of two strands with contiguous basepair edge sdestw
them. A duplex may optionally havesticky-endon either end. Am-armed (branched) junction
consists ofn duplex arms arranged around a central pointdduble crossover ungDX unit)
consists of two adjacent duplexes with two points of straxzhangé?. For formal reasons, the
empty graphe is a DNA complex.

We now define some operations on complexes. In our modeljdigation is indicated by
Ci +, Cy = C3, where+; denotes the formation of basepair edgebetween nodes af; and

ZSimilar to theclusterin Beaver (1995).

22Real DX molecules (Fu and Seeman 1993) come in a number ofejgiomarieties (we use “DAO” here), each
of which put constraints on the symmetry and the number ofeaticles between crossover points. We ignore these
constraints in the theoretical section.
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nodes ofC,. If the graph consisting of botfy; and C, and the edge$® is a DNA complex,
thenCj is that graph; els€'s = ¢ (for example, if a new edge joins twi's). The hybridization
operation will be used to describe self-assembly, below.

To analyze the complexes present after self-assembly, tveelirce two other operations based
on ligation and denaturing?’ = ligate(C) is obtained by adding a backbone edge from npde
to nodei in every occurrence of the subgraph shown in Figure 3.9psp &s hodesandj have
no other incident backbone edges.

To model the denaturing of a complex, we defif@;} = denature(C) to be the set of
all strandsin C, i.e., eachC; is a backbone-connected componen€ofwith no basepair edges).
Note that ifC' contains topologically linked circular strands, thagmaturewill “magically” unlink
them from each othé.

In analogy to formal language theory, we definiaguage of DNA complexés be a well-
defined, possibly infinite set of DNA complexes. We can geresdanguage of complexés; 4
by applyingself-assembly rule® to an initial languaged, usually finité*. The rulesR specify
which hybridizations”; +, Cy = C5 are allowed. Lel r,A be the transitive closure of under all
allowed hybridizations. In other words, (d) C Lp 4, (b) if C1,C € L 4 andCy 4, Co = C3
is allowed, thenC; € Ly 4, and (c) no other complexes are iy 4. Now let Lz a4 C Lg.a
consist of those complexes for which no further hybridizatis allowed; these are calléerminal
complexes Loosely, L 4 is meant to model the DNA structures which would form given an
infinite volume of DNA and infinite time, presuming that onhet hybridizations allowed by
are physically relevant, and ignoring transient structure

We will be especially interested in the self-assembly Rilg2] which allow C; +, Cy =
C5 # € iff (1) the subgraph of”; induced byB contains exactly tw@-mer (or longer) strands
and (2) at most two edges lead to or exit from this subgraplusTR! allows only hybridization
of sufficiently long sticky-ends, as illustrated in Figurd@.

L

Figure 3.10: A hybridizatiorC; +, Co = Cj; allowed byR3. The edges of3 are emphasized in
(s, and the subgraph induced Byhas a dotted box around it.

Both ligate anddenature can be generalized to set operations by applying the oparéti
each complex in the original set, and taking the union of athplexes that result. Since single-
stranded DNA can be identified with its sequence, writter=53’, we can consideflenature

ZCircular strands are not necessary in our constructiortshley must be considered in Theorem 2(2).
24 ogicians may think of4 as “axioms” whileR may be thought of as “inference rules”.
*The subscript “1” is used because these rules give rise emtialy one-dimensional complexes.
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to be a function from sets of complexes to sets of strings ¢¥elC, G, T, -}, where- is used to
indicate a circular DNA strand.

Finally, we note that to represent strings in alphab¥®etether than{ A, C,G, T}, we may
use aprefix-free codebook which assigns to each symbelin X a stringC, over{A,C.G,T}
such that no string is a prefix of another string. A DNA seqe@enc= siss...s, can then
be translated into a string(s) over > by scanning throughs from left to right: if s; begins a
subsequence afwhich exactly matches sontk, thens; is replaced by, elses; is erased; then
si+1 IS processed, and so forth. For example;i= {0,1}, Cp = CAG, andC, = CTC, then
C(AAACTCTCAGTCAG) = 1100.

In summary, given a finite set of complexésself-assembly rule®, and codebook, we can
obtain a language of complex€s; 4 as well as a language of strings

Lpr ac = C(denature(ligate(Lr,a)))-

We now turn to our results. The theorems are stated, exglaara examples are given. Full
proofs will appear elsewhere.

3.2.3 Linear Self-Assembly is Equivalent to Regular Languages

In this section we address the question of what can be comhpytthe self-assembly DNA which
obeys Properties (1-4), (5a), and (6a) or (6b). This is thalfar case of the self-assembly of long
duplex DNA from many small oligonucleotides or sticky-eddeagments. That is, self-assembly
begins with oligonucleotides or duplex DNA with sticky endad proceeds at a constant temper-
ature, allowing only permanent binary events with a singldgxtly complementary hybridization
site and no intramolecular hybridization. We make this ¢joasprecise in our model by asking,
what languages of strings can be achieved & , . for some choice of’, C, andA where A
contains only linear duplex complexes?

The following?® can be proved by construction:

Theorem 1. (1) For all regular languages, there exists a positive integér, a codeboolc,
and a set of linear duplexe$ such thatC = LRT’A’C. (2) For all positive integerg’, codebooks
C, and sets of linear duplexes, LRlT,Ayc is a regular language.

We will sketch the construction used in the proof of (1) — ségufe 3.11 for an example.
Consider a regular grammét for £. We design sufficiently dissimilar sequencggwe call their
Watson-Crick complements)) for all the terminal and nonterminal symbols@h For each rule
A = p1...p, B, we design a duplex with a sticky esd,, and internal duplex regiof,, ... S,
and a sticky endSg if B is present. We also design a duplex with one blunt end andlaysti
endSg, to represent the start symb8l These duplexes make up the initial set of complexes
T is chosen to be the length of the nonterminal sequelgcesfter self-assembly, the terminal
complexes inCRTA will correspond to derivations /. After ligation, each complex will be a
blunt-ended duplex whose sequence consists of terminaésegs interspersed with nonterminal
sequences. A codebook with = S; for each terminal symbal will “erase” the nonterminal
sequences; thuS,r 4 . will be exactly L. O

A sketch of the proof of (2) is as follows: we construct a regrammaiG which generates
exactly the strands idenature(ligate(L RT, 4))- This requires creating a nonterminal symbol for
each sticky end of a duplex id, and considering all (finitely many}-or-more base overlaps
of these sticky-ends; a grammar rule is provided for eacln snteraction. Care must be taken

*5We note that this theorem still holds when “duplexes” is agpl by “strands”.
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A A ACAG AT A C A G
S= 0S T=0T
G T CT T T G T CTAT
c cc A AAC T C AT ACTC
S S= 1T T= 1S
G G G T T T G A G T A T G A G T T T
A A ACAG AT A CTC
S=0 T=1
G T ¢C G A G
1 0 1 0 1 1
c cC C A A A C T C A A C A G A T A C C AA A CAGAAATCTTCATATCTC
GG eTTTGEAGCGTATGETCT ATGEGAGT T TTGT CTTTGAGTATE GAGEG

Figure 3.11: The initial complexed corresponding to the regular gramni@y;, and an exam-

ple derivation. Note that the self-assembly of the demraitould have occurred in any order.
Subsequent ligation and denaturing will produce two stgibap and bottom) from this terminal
complex. The codebook definesCy = CAG andC; = CT'C. We useR;.

for gaps and for sticky ends which have no interactions — bedd to termination of the strand
sequence, and may require a rule using the start syisbdlranslation by the codebook can be
effected by applying a nondeterministic finite state traced (Ginsburg 1966) td;, yielding a
regular language equal rbRT Ac- O

Thus, our model for linear self- assembly does not permiy weteresting computations. It
should be emphasized that simple extensions might allownfime complex computations. For
example, suppose hairpins appearrin addition to duplexes. Then, for example, we could

replace the duplex faf (Figure 3.11) by the halrpn@jﬂ— and change the codes for 0 and 1 to
the Watson-Crick palindromeSCGG andCGCG. Now both the top and bottom strands code
the 0 and 1 sequences; furthermore, after ligation the tolpbattom strands are joined together
by the hairpin. Consequently, we generate the set of alh@adimes in which the number of ones
is a multiple of four — which is not a regular language! Howdan we push this idea?

3.2.4 Dendrimer Self-Assembly is Equivalent to Context-Free Languages

Dan Abrahams-Gessel pointed out to me that dendrimer sséfrably looks formally identical
to context-free grammars. This observation translateg a@ely into DNA self-assembly of
branched junctions into tree-like complexes. Therefanethis section we address the question
of what can be computed by the self-assembly of DNA which slewperties (1-4), (5a), and
(6b-d). That is, self-assembly begins with duplexes, adérpand 3-armed junctions with sticky
ends, and proceeds at a constant temperature, allowingpentyanent binary events with a single
perfectly complementary hybridization site and no intréecalar hybridization. We note that
this form of self-assembly has not been widely studied inl#te and that full self-assembly
would be limited not only by material but also by geometrie(i) interference and volumetric
constraint$’. Nonetheless, our abstract model allows us to ask the foltpwrecise question:

ZConsider a tree which branches at every opportunity. ItXfasodes withinn steps of the center; but the volume
of space withinz. steps grows only as®.
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what languages of strings can be achieved %R?,Ayc for some choice of’, C, and A where A
contains only duplexes, hairpins, and 3-armed junctions?

An extra complication that immediately arises is the pdbsitthat circular strands may form.
Recall our convention thalenature returns “dotted” sequences to represent circular stramds,
didn’t specify which permutation of the circle to use. It betes convenient to work with equiva-
lence classes of sequences, whérez -T if the sequences andT are circular permutations of
one another. Languagé#s and., are deemeeéquivalenif for every sequencé in one language,
there is an identical or equivalent sequefitim the other language.

The following?® can be proved by construction:

Theorem 2. (1) For all context-free languagéey there exists a positive integ@r, a codebook
C, and a set of duplexes, hairpins, and 3-armed junctidrsuch thatl = ERITVA’C. (2) For
all positive integersr’, codebooks’, and sets of duplexes, hairpins, and 3-armed junctiéns
L RT AC is equivalent to a context-free language.

A T A C

s M— x
G
AT

e M*

S S+S M— M*M
A T A C

M—y M—z
G

y

A AA CCCC AT

S— M M— (S)

GGG G T AT WTTT

Figure 3.12: The initial complexed corresponding to the regular gramn@ly.. The codebook
C definesC, = CCTT,C, = TTCG,C, = CATT,C( = CACA,Cy = TGTG,C, = ACCA,
andC, = TCCT. We useR3.

We will sketch the construction used in the proof of (1) — segufe 3.12 and 3.13 for an
example. The construction is similar to that in Theorem 1.n€ader a context-free grammar
G for £. Note that there is an equivalent gramntarwhich uses rewriting rules of the form
A — pBqCr wherep, q, andr are (possibly null) strings of terminal symbols, aAdB, andC
are single nonterminal symbols (or null). Again, we desigfficiently dissimilar sequences; for
all the terminal and nonterminal symbols used:inFor rules of the formd — pB or A — Bp (B
not null), we design a duplex as before. For rules of the fdrm p, we design a hairpin with the
sequences fagy in the stem. We design a 3-armed junction for each rule ofdhmfA — pBqCr
(B andC not null); it has sticky ends fo$’,, Sp, andS¢, and the sequences fpr ¢, andr are

ZWe note that this theorem still holds when “duplexes, haspiand 3-armed junctions” is replaced by simply
“complexes”. That is to say, this is a fully general theoremdelf-assembly undei? .
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placed on the arms. As before, we design a blunt-ended ddipteke start symbolS. These
complexes make up the initial set of complexesAs before, at the appropriate “temperatuie”
the terminal complexes will correspond to derivation&irand ligation will convert each complex
into a single strand which encodes the derivation. Proogssith the codebook for the terminal
symbols will “erase” the nonterminal sequences, ﬁr,xgy ac Will be exactly£. O

v
- v
o
A ©
© °
o
o
o
o
A

X
M

Figure 3.13: An example derivation by self-assembly of thmplexesA corresponding to the
regular grammar7r. Note that the self-assembly of the derivation could haveuwed in any
order, usingR3. Subsequent ligation will produce a single strand from thisninal complex.
Inset: the three-armed junction corresponding to the genewriting rule A — pBqCr.

The proof of (2) also follows the form of the proof of Theoremahly now we construct a
context-free grammag which, loosely speaking, generates sequences corresgptadbackbone
paths through complexes Mpa,te(LRTvA), where gaps are filled in with the symbo| and where
several (but not necessarily all) permutations of eachutarcstrand are given using This lan-
guage is then passed through a nondeterministic transavlteh returns the strand sequences
in {A, C,G, T} and circular strand sequences{id, C,G,T,-}. As before, the final strings are
produced by another nondeterministic transducer, whightitme translates using the codebook.
Thus the final language is context-free, and is equivaleﬁIRtlf)y Ac O

More intuitively, we can reason that because no intramddedwbridizations are allowed by
RT, the initial complexes can aggregate only into tree-likacttires. No matter how convoluted
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the original complexes are, paths through the resulting-likee structures are well modeled by
context-free languages.

Our model of self-assembly of DNA into tree-like structutess strictly more computational
power than the model of linear self-assembly. However, #tiik a far cry from universal com-
putation. It turns out that when we attempt to model intragaolar interactions, in the form of
cooperative binding sites, a much more powerful model tesWe consider a particular case in
the following section.

3.2.5 Two Dimensional Self-assembly is Universal

To prove that two dimensional self-assembly can be unieitsauffices to demonstrate a re-
stricted class which is universal. We review the class ofcstires introduced in Winfree (1996b),
which are geometrically based on a lattice of double crams{@®X) units of DAO type Fu and
Seeman (1993). It was shown in Winfree (1996b) that theasd&mbly of DX units can directly
mimic the operation of an arbitrary one dimensional celldatomata system. An example is
shown in Figure 3.14, where a simple blocked cellular automaule (corresponding to the un-
restricted grammaf p of Section 3.2.1, but without the termination rules) is usedenerate a
Sierpinski triangle pattern.

The model of self-assembly used here follows Propertie$) ({5b), and (6e), and it is moti-
vated by additional physical concerns. As shown in Figutd 3he hybridization events may now
involve two binding sites arranged askbt Geometry becomes important; only sticky ends which
are close to each other and arranged properly may form a sletaxbinding can occur. Physically,
one sticky end of an unattached DX unit would hybridize to side of the slot, followed shortly
by (the now intramolecular) hybridization of the DX unit'sher sticky end to the slot’s other
binding site. For full computational generality, it is ¢cdl that a DX unit which matches one site
in a slot, but not the other site, witiot hybridize to the lattice. Under appropriate conditions, DX
units which bind to only one site in a slot would soon disstgigvhile fully matching DX units
would bind nearly irreversibly. We therefore model slolitfid as a single permanent binary event
involving two binding regions, and@ is chosen so that single-site binding will not occur.

We emphasize that this form of DNA self-assembly has not gehlidlemonstrated experimen-
tally, although we report some preliminary results in Smc#.1.

We must define new self-assembly rulés; allows hybridizations allowed by?!, and addi-
tionally allows two-region slot-filling hybridizations bg&een complexes containing the subgraphs
shown in Figure 3.15, so long as the total number of basedgi&inB is at leastl". This rule is
meant to model local geometry in complexes; it will be a goaztlet only for certain structures,
including (we believe) the ones used in our construction.

The following can be proved by construction:

Theorem 3. (1) For all recursively enumerable languagésthere exists a positive integer
T, a codeboolC, and a set of duplexes and DX unitssuch thatl = ERg,A,c- (2) For all
positive integerd’, codebook®’, and sets of duplexes and DX unids £ RTAC is equivalent to a
recursively enumerable language.

The proof of (1) is based on the constructions in Winfree Gt9As cellular automata are ca-
pable of universal computation, for example by directly@iating Turing machines, we conclude
that two dimensional self-assembly is universal. (2) fsdecause there is an algorithm for gen-
erating all the complexes i 4 so long ask is computable: keep trying new hybridizations of
complexes known to be in the language, and remember theingsabmplex.O

Although universal, one dimensional cellular automatarereoften a convenient model for
computing _functions_of interest, although they are fastet more efficient than 1-tape Turing
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. B B W W I
BW=BB ij\:b “CVT/ W@(C\ﬁ WW = WW
w B’ B’ B

Figure 3.14: An algorithmic pattern in a self-assembletidat At the top, the seven initial DX
units in A are shown (the black dot is a visual aid to identify “black’hgaexes), involving 22
oligonucleotides. The corresponding rewriting rules fr6hm are presented in boxes. The units
use 12 unique sticky end sequences, denote({l[b)R,(E, E, V(T/, v_f/} and their complements’
etc. TheL and R sequences are both lendih the other sequences are len@tji2. Upon self-
assembly according tB], a V-shaped chain of the lower three units is formed due taitligation

of L and R, while the open slots in the initial chain are filled by theaure unit whose sticky ends
match those on both sides of the slot. In this example, thegssocontinues indefinitely. Each
strand inligatE([‘,Rg“’A) represents one or two columns of Pascal’s triangle mod 2.

- + SRS + S
C IR |G, ¢ )
0T

Figure 3.15: Two allowed slot-filling hybridizations iRS. These graphs represent requires sub-
graphs of the complex&S; andCs in C; +, Co = C3. Other positions of nicks are also allowed,
as are other lengths of the duplex regions.

Machines, due to their parallelism.

3.2.6 Solving the Hamiltonian Path Problem

As a concrete example of using two dimensional self-assefobkcomputation, we will solve the
same Hamiltonian Path Problem (HPP) used in Adleman (19B4}all that the problem is to
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find a path from node 1 to nod¥ which visits every node id exactly once. Our algorithms for
solving HPP will be based on:

1. Generate all paths from node 1 to nade

N

. In each path, sort the vertices into increasing order.

w

. For each path, check that the result is exactly2;3, ..., N".

IS

. Output any path which passes the test, if one exists.

In a preparatory step, DNA sequences are designed for tea graph and synthesized. Steps
1-3 will occur as a single self-assembly step, while Stepnkists of sequencing circular DNA of
known length.

For the graph used in Adleman (1994) (shown in Figure 3.18a) 7 and we will require
a total of 68 DX units of DAE type. Shown in Figure 3.16b, urfitthrough 20 are responsible
for Step 1 of the algorithm (the bottom layer in Figure 3.bJathese units are analogous to the
oligos in Adleman’s solutiof?. Units 19 through 61 are responsible for Step 2 of the algorit
sorting is accomplished by the Odd-Even Transposition Gortuth 1973). When the symbeb
has travelled all the way to the right, the sorting is comgplatd Step 3 is initiated, using units 62
through 68.

Each terminal complex either (a) encodes a valid Hamiltofath, in which case the com-
plex is complete (Figure 3.17a), and ligation cyclizes th&eoring, but not the inner ring; or
(b) encodes an invalid path, in which case the terminal cerpbntains unfilled, open slots (Fig-
ure 3.17b) and will produce no cyclic strands when ligétedrhus Step 4 can be achieved by
separating cyclic from linear DNA strands (e.g. by 2D gekeigphoresis, by exonuclease di-
gestion, or by affinity purification based on thg) N E sequence) followed by amplification and
sequencing.

Let us briefly compare this molecular algorithm to the oneduiseAdleman (1994). To solve
a graph withV nodes andv edges, Adleman used roughly + E oligos andN laboratory steps.
We would use roughlyz? /N + N? + N DX units (each requiring up to 5 strands) and a constant
number of laboratory steps (synthesis, annealing, seigft

Because two dimensional self-assembly can simulate arpitellular automata, similar algo-
rithms can be designed for any computational purpose. Fonple, anV-variable sizes Circuit-
SAT problem can be solved using rougtiis DX units and a constant number of laboratory steps

after synthesis.

adleman’s oligos encoded individual edges in the graph,redm ours encode pairs of edges. Also, knowing that
a Hamiltonian path in this graph must visit exactly 7 nodes,nits are devised such that only odd-length paths can
form completely.

0This can be ensured either by leaving an unmatched base stidkeends for interior units, or by phosphorylating
only units which occur on the outer edge.

3INote that if a path visits a node twice, there will be a gap s‘Btep 2" portion of the terminal complex; if a path
fails to visit some node, there will be a gap in the “Step 3"tjwor of the terminal complex.

32How feasible these imagined laboratory steps would be ispofse, an open question. However, once the labora-
tory techniques have been debugged, conceivably our tigodould be carried out in a single day’s work — regardless
of the size of the graph (volume permitting). A concern igth#ore so than in Adleman’s algorithm, the success of our
algorithm is critically dependent upon ligation yields.riemample, if ligation is 80% effective, then orhy8*° = 0.1%
of the correct terminal complexes will be fully cyclized imroN = 7 graph. Also, since each path requires a DNA
molecule roughly 100 times larger than the DNA used in Adleialgorithm, greater reaction volumes will be neces-
sary.
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3.2.7 Three Dimensional Self-Assembly Augments Computational Power

A trivial corollary of the universality of two-dimensionaklf-assembly is that if three dimensional
structures are allowed, self-assembly is still univeriias of greater interest if we can exploit all
three dimensions to allow for more efficient or more reliatdenputations. We propose a scheme

(@ 6
DONE Ci1 Ce
7 NN e —
types 1 C, P C N
ic{2..6}
1 a min(a,b) max(a,b) a 7
a1 —OC O TOC O O OC T
1’ a’ a<——————p a7
types
ac {2..6p } abh {2..6 } ac{2..6}
a= b
1 b c 7
v U c ’
b
© = C b c
20 1 e A I e
types o
! ; W 7
/ ‘ b/ c
1—- ¢ a- b c a-b- e 7
(b) abc {2..6} a & & a

Figure 3.16: (a) The 7 node gragh (b) Rule molecules (DAE type) for solving the Hamilto-
nian Path problem. Sticky ends of lendgth2 are{1,2,3,4,5,6,7,00,C4,Cy, Cs,Cy,C5,Cg}
and their complements; sticky ends of len@tlare{1, 2, 3, 4,5, 6, 7} and their complements.
DONE is a special sequence which indicates completion of a datfitie variables, a, b, c are
used to concisely represent a multiplicity of rule molesuli¢licized variables indicate lengih
sticky ends. For example, in the lower set, 15 units are desigrom the central schema, one for

each pair of incident paths— b, b — c.
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Figure 3.17: Terminal complexes after annealing. Blacls agttow nicks which will be ligated.
(a) The lattice verifying the Hamiltonian path 1452367. i lattice rejecting the invalid path
123452367.

to do exactly that, again for concreteness using DAO unitswaibasic building block. In this
section, we will present some physical considerationsytavill not formally defineR? .

We begin by noting that the solid angle between two adjacé® Dnits is determined by
the length of the linker arm between them. For the planaicitive choose a length such that
the angle is approximateli80°. Alternatively, we can choose lengths such that the angieas
120°, the appropriate value for a “honeycomb lattice” as showfigure 3.18.

As in the case of the two dimensional lattice of DAO units, pomation is brought about by
judicious choice of the sticky end sequences on several DAfS.uThe three dimensional lattice
thus formed is equivalent to the space-time history of a 2igk#d cellular automata.

The particular incarnation of three dimensional lattices#n here is clearly not unique, and
it is suggested more as a brain-teaser than as a serioussptppther geometries are possible,
perhaps having preferable practical characteristics.
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12 bp 16 bp 11 bp

Figure 3.18: Plan for three dimensional lattice. (a) Threxss-sections through the final lattice,
corresponding to the three sections indicated in (b). €&ckpresent cross-sections through a
double helix of DNA; bars indicate which helices are partlod same DAO unit. (b) Relative
angles of five DAO units are indicated. For perfé2° angles, helical twist between 31.5 and
35.5°/ bp is required. (c) Detail of the DAO units. A single DAO unitith sticky enda comple-
mentary toA andb complementary td, suffices to generate the entire lattice. For computations,
the sticky ends are indexed sat.binds only A; andb; binds B;.

3.2.8 Discussion

We have analyzed the computational power of three diffamgimes of self-assembly in our ab-
stract model, and we have speculated on an extension insellhk@assembly of a three dimensional
lattice.

The essential construction in the linear case is due to Aaife(h994) who used it to construct
paths through graphs. Boneh et al. (1996b) and Winfree (1988served that linear self-assembly
is capable of generating regular languages. Here, we $tatesult in the context of our formal
model, and we show that linear self-assembly of duplexdimised to regular languages. This
point requires making the distinction between self-asdgpiocesses with and without hairpins,
as shown by the palindromes example. Linear self-assenaislp&en exploited in many laboratory
experiments — both by molecular biologists and by peoplerésted in molecular computation —
and although its intricacies are not completely understtizete is a wide foundation of practical
experience.

The self-assembly of branched junctions into dendrimerctiires seems to be a relatively
unexplored idea. For example, in Ma et al. (1986) it is obsgrhat identical three-armed junc-
tions with two complementary sticky ends can cyclize. Ifl@ation cannot be prevented, many
context-free grammars would be impossible to implement ddfrassembly. Another concern
comes from geometry:_if the desired tree-like structuretaimis too many branches, steric hin-
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drance may prevent further associations from occurringusTihis not known to what extent the
technique will be practical.

The self-assembly of DX units into a two-dimensional lattis also an unconventional idea,
yet to be demonstrated in the laboratory. Some first stepsisndirection are reported in Sec-
tion 4.1, where the slot-filling reaction is explored.

It is interesting to observe that the Chomsky Hierarchy ofjlzages, developed originally
for the study of human languages, also arises naturallyarstiidy of self-assembling structures.
The progression from regular to context-free to recurgieumerable languages can be seen to
parallel both (a) the progression from linear to dendringeplanar lattice structures, and (b) the
progression from “rule molecules” with effectively one irtpand one output, to those with one
input and two outputs, to those with two inputs and two owgput

One should note that all the previous arguments ignoredittegi& framework implicit in the
process of annealing that we originally consider. Spedificae expect that longer complemen-
tary regions hybridize first. Annealing could be represérimeour model as recursive computation
of languages:

cal .
E'}?TZ?C = C(denature(llgate(ﬁR} ’[:Rf,ﬁRz )

The kinetic aspects of this model of linear self-assembly thamselves be exploitable for com-
putation. Intermolecular interactions other than the armssidered here might also provide com-

putational advantages. Issues of concentrations and §afiply of DNA must also go into any
more practical analysis.

3.3 Simulation of Self-Assembly Thermodynamics and Kinetics

Abstract®3  Winfree (1996b) proposed a Turing-universal model of DNA
self-assembly. In this abstract model, DNA double-crossanolecules self-
assemble to form an algorithmically-patterned two-din@mel lattice. Here,
we develop a more realistic model based on the thermodysaanid kinetics
of oligonucleotide hydridization. Using a computer sintida, we investigate
what physical factors influence the error rates (i.e., whenrmmore realistic
model deviates from the ideal of the abstract model). We fimadgreement
with rules of thumb for crystal growth, that the lowest errates occur at the
melting temperature when crystal growth is slowest, and ¢éha@r rates can
be made arbitrarily low by decreasing concentration andeging binding
strengths.

Early work in DNA computing (Adleman 1994, Lipton 1995; Bdnet al. 1996a; Ouyang
et al. 1997) showed how computations can be accomplisheddbycfeating a combinatorial li-
brary of DNA and then, through successive application aiddad molecular biology techniques,
filtering the library to identify the DNA representing thesaver to the mathematical question. In
these approaches, the problem to be solved determinesgherss of laboratory operations to be
performed; the length of this sequence grows with problerg, shtimidating many experimental
researchers. Consequently, a few researchers have begkinganto chemical systems capable

*Results in this section also appear in Winfree (in press a).
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of performing many logical steps in a single reaction, treeing to paradigms for DNA com-
puting where the problem to be solved is encoded strictly MAequence; a fixed sequence of
laboratory operations is performed to determine the answire posed question. Promising ap-
proaches include techniques based on PCR-like reacticagiyl et al. in press; Sakamoto et al.
in press ; Hartemink and Gifford in press; Winfree in presam techniques based on DNA self-
assembly (Winfree 1996b; Winfree et al. in press; Jonoské &t press). Although there has been
experimental work exploring all these models, typicallyyoa few logical operations have been
demonstrated. It is at this point unclear how well any of #hhiques can be scaled up. Short of
full experimental demonstration, realistic simulatiorishte chemical kinetics and thermodynam-
ics can shed light on what can be expected of these systemhgaarpoint to parameter regimes
where the experiments are most likely to succeed. This pagsents a preliminary analysis of
the self-assembly model of Winfree (1996b).

To motivate the self-assembly model, we consider the phypiocess of crystallization. Dur-
ing crystal growth, monomer units are added one-by-one #tdeéined sites on the surface of
the crystal. There may be more than one type of monomer, iclwtéase there may be several
different types of binding site, each with affinity for a difent monomer; typically a periodic
arrangement of units results. The question of whether gieriattices willnecessarilyresult has
been studied in mathematics in the context of two-dimemsitlings (Grinbaum and Shephard
1986). A set of geometrical shapes (tiles) are said to tile the plane if the tiles can be arranged,
non-overlapping, such that every point in the plane is cadieA surprising result in the theory of
tilings is that there exist sets of tiles which admitly aperiodic tilings (Berger 1966; Robinson
1971), the most elegant being the rhombs of Penrose (19T&) variety of aperiodic patterns is
limitless: using square tiles with modified edges, the tepaee history of any Turing Machine
can be reproduced by the tiling pattétr{Wang 1963; Robinson 1971). Is it possible to trans-
late these results back to a physical system, to producéodfecrystals, or even crystals which
“compute”? Already, there is an extensive literature ondsgjarystals” (Steinhardt and Ostlund
1987), materials which exhibit “prohibited” 5-fold symmgtaind which are thought to be related
to the aperiodic Penrose tiles. The purpose of this paperesamine the suggestion in Winfree
(1996b) that DNA double-crossover molecules can be usedatcerprogrammable “molecular
Wang tiles” that will self-assemble into a 2D sheet to sirteiny chosen cellular automaton. It
has already been shown experimentally that double-cressowlecules can be designed to as-
semble into a periodic 2D sheet (Winfree et al. 1998) andalsagle logical step can proceed in
a model system. In this paper we argue that it is physicaliygible to perform Turing-universal
computation by crystallization.

3.3.1 An Abstract Model of 2D Self-Assembly

The results in the theory of tilings are entirely existelaying nothing aboutowa correct tiling

is to be found. What is missing is a mechanism for produciliggs. In this section we describe
the relation of computation and self-assembly by presgragmabstract model of two-dimensional
(2D) self-assembly, which we call the Tile Assembly ModeheTundamental units in this model
are unit squardiles (also callednonomerswith labelled edges. We have an unlimited supply of
tiles of each type Aggregatesare formed by placing new tiles next to and aligned with éxigt
ones such that sufficiently many of their edges have matdaingls. Tiles cannot be rotated or
reflected. To define the model completely, we must be predisatavhen “sufficiently many”

34Even more is possible: there exist tile sets which procharerecursivepatterns (Hanf 1974; Myers 1974)! How-
ever, it is unlikely that any physical process could giverie non-recursive patterns, in any computable amount of
time. All models discussed. in this paper are strictly coraple.
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edges match. Each edge lalglhas an associatestrengthg;, which must be a non-negative
integer. At “temperature’7’, an aggregate of tiles can grow by addition of a monomer wieme
the summed strength of matching edges excéedsnismatched labels neither contribute nor
interfere) — these are callexfableadditions. We say that a set of tilés producesaggregated
from seedtile T if A can be obtained from the single tiléby a sequence of zero or more stable
additions of monomers; in which case, we also say simply EhptoducesA (if there is no need
to specify the seed tile).

To illustrate this model, consider the 7 tiles shown in Fg8r19d. The four tiles on the left
are called theule tiles because they encode addition mod 2; the three tiles on theaig the
boundary tiles the one with two strength-2 edges is t@rner tile There are 4 edge labels, of
strengths 0, 1, 1, and 2. At temperatgre= 0, every possible monomer addition is stable, and
thus random aggregates are produced. At tempergture 1, at least one edge must match for
an addition to be stable, but now the arrangement of tilekiwin aggregate depends upon the
sequence of additions. At temperatdre= 2, there is a unique choice for the tile in each position
relative to the corner tile, independent of the sequenceafits. Under these conditions, this set
of tiles produces the Sierpinski Triangle by computing Résdriangle mod 2. At temperature
7T = 3, no aggregates are produced because no monomer additinotteeamonomer is stable.

\
Vo
\
\

@ e C) R SIS SIS N 2
{}ﬂ{} @ h§ £ N1 N2 20
AR Jo TN

(b)

Figure 3.19: The Sierpinski Tile set is shown in (d). Therggtes of edges are marked, and the
edge labels are denoted graphically. In (a) - (c), smalé tilee used to indicate possible stable
additions to the aggregate. (a) Wh&n= 0, any tile addition is stable, and a random aggregate
results. (b) Wheril = 1, typically several stable possibilities at each site; mgai random
aggregate results. (c) Whén = 2, there is a unique possibility at each site, resulting irquai
pattern formation.

Whereas it is impossible to uniquely produce non-triviajragates whefi = 0, an arbitrary
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shape can be produced7t= 1 by assigning a unique tile to each position and giving eagje ed
a unique label. However, this requires the use of many th¢§ = 2 we can produce interesting
patterns with few tiles.

A hint of the computational power of the Tile Assembly Moddiem7 = 2 is provided by
a simulation of cellular automata The proof we develop below demonstrates two important
points. First, even though tile addition is stochastic, igu@ pattern is produced regardless of the
order of events, because only stable tile additions are nfaeleond, the arrangement of tile types
on the 1D growth front of the aggregate can represent infoam@much like how the arrangement
of O’'s and 1's on a 1D tape represents information for a Tukitaghine), and stable tile additions
can modify that information by specified rewrite rules, téag in fully general computation.

Our simulation is based on one-dimensional blocked celmlgomata (BCA3®, a variety of
cellular automaton (CA). The example of Pascal’s Triangtel & (Gardner 1966) has been studied
as a cellular automaton by Wolfram (1984). It is known that®B&hd CA are Turing-universal
models, and simple simulations of Turing machines have bdearonstrated (Smith 1971; Biafore
preprint). We begin by defining BCA.

Definition: A k-symbol BCA is defined (using the integef$,2,... .k} = Z;) by a rule
table

R = {(11,7“1) — (l;,?";)} C (Zk X Zp — 2 X Zk)

If Ris a function, then the BCA is termed deterministic. Htatec of the BCA assigns a symbol
to every location on an infinite linear array célls At each time step every cell ief is rewritten

to producec’*!; thus we use’(z) to denote the symbols written in cellafter¢ steps. The BCA
usesR to re-write pairs of cells ire, alternating between even and odd alignments of the pairing
for event and evene, and for oddt and odd,

((ct(x), z+1)) = (T (@), (z + 1))) €R.

An input to a BCA computation is a stat® with a finite number of non-zero cells. For conve-
nience and without loss of generality, we will confine oueation torn-bit binary inputsb, and
write ¢’ = b to refer to an input where® (i) = b; for 1 < i < n andc’(i) = 0 otherwise.

The computation of the BCA define$(z) over the half-plang > 0. We will show how to
construct a set of tile$ such that in all aggregates produced from the seedrdf there is
a tile at position(i, j) with respect to the seed tile, then the tile has edges engetii(i — j)
andc¢t7(i — j + 1). Thus the time-history of the BCA computation is reprodueelctly in the
self-assembled tile aggregate.

First we show, for any:-bit BCA input b, how to generate the set af+ 3 input tiles7(b).
Figure 3.20a shows the construction. Because the only edfighes possible with these tiles are
strength 2, af” = 2 all produced aggregates are essentially as shown, witablariength regions
encoding “zero” on either side. The tile whose top edges @mdutsh, andb; is referred to as
the seed tilely and is used as the reference for indexing tiles by locatioine Bottom of each

%This result, presented in less detail in Winfree (1996kanstates Wang’s simulation of Turing Machine execution
by the Tiling Problem (Wang 1963) into the Tile Assembly Mbdizen here. The Tiling Problem can be viewed as
asking for the ground state of an N-state Ising model, wharhlze seen as a question of equilibrium thermodynamics
in the limit asT — 0. Not only can Ising models be produced which are Turing-ems&l because the ground state
reproduces the space-time history of any chosen Turing Machut the proof that tiles sets can be found which tile
the plane non-recursively shows in fact that the groune stban Ising model can be non-recursive. Thus it is essential
to study a kinetic, rather than thermodynamic, model.

36BCA (Wolfram 1994) are also known gsrtitioning CA (Margolus 1984) and as 2-body CA or particle machines.
They generalize the lattice gas model (Hardy et al. 197@) aa@ commonly studied in two dimensions.

www.manaraa.com



59

input aggregate contains only strength-0 edges, so ncefuatiditions can occur there. The top of
each input aggregate contains exclusively strength-1sdgeanged in a zig-zag forming series
of binding sites, calledlots where a new tile could make contact witho strength-1 edges. For
aggegates containing the seed Tilg these edges encode the inpgiand the pairing of cells.

(a)@@(b)
©o00S

Figure 3.20: Using the Tile Assembly Model to simulating aBmputing from a binary input.

(@) Input tilesI(b) for b = 10011101, and an aggregate they produce7at= 2. Here we use
conventions similiar to Figure 3.19 to indicate the stréngft edges: thick edges are strength-0,
doubled edges are strength-2, and all other edges are ttréndb) Schematic showing a rule
tile generated from the BCA rulg, r) — (I’,7'), and an aggregate produced by the rule tiles and
input tiles. Note the dotted lines indicating the defaulbrctiinate system with origin at the seed
tile Ty. In this schematic, the edge labels for the rule tiles arddesttified.

Next, for BCA rulesR we generate a sé? of k? tiles as shown in Figure 3.20b, using one
tile for each rule(l,r) — (I',r'"). All of theserule tileshave exclusively strength-1 edges, so at
T = 2 they cannot form aggregates with themselves; they mustdukegeby the input tiles. Thus,
when the tile sets’z and I(b) are mixed, rule tiles can sit down in the slots presented by th
input aggregates iff both of the presented edges match.i@oren aggregate in which: (1) only
rule tiles are present abovet- j = 0, and (2) every rule tile has both of its lower edges correctly
matched. It follows directly from the definitions that theged presented by the tile @t j) has
edges encoding /(i — j) andc'* (i — j + 1) because this is true of the input tiles, and every
rule tile respects the update rule for the BCA. What remainiset shown is that (1) and (2) hold
for every aggregate producedAt= 2. This is done by induction oV, the number of rule tiles
in an aggregate. For convenience, we refer to an aggregataigimg exactlyN rule tiles as an
N-aggregate.

Base case: (1) and (2) hold for any 0-aggregate.

Induction: Assume (1) and (2) hold for all-aggregates. Note that (1) and (2) together imply
that abovei + j = 0, the exposed edges of the aggregate areeredges. Any(N + 1)-
aggregate must be produced fromsiraggregate by a sequence of stable additions of input tiles
followed by a stable addition of a rule tile. (1) holds for thew aggregate because all exposed
edges aboveé+ j = 0 are upper edges labelled frofy,, while all lower edges of input tiles are
labelled from{L, R, s1,..., s }. (2) holds for the new aggregate because a rule tile mustrmatc
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two edges to be added, and only upper edges are presentbd, rstettile’s two lower edges must
match.O

Thus, we have proven:

Theorem: Let R be a BCA, and let(¢, z) be the value of celt: at timet for a computation
on inputb. If an aggregate produced from seggby the tile setP = Pr U I(b) has a tile in
position (4, j), then the tile’s upper edges encadé’ (i — j) andc' 7 (i — j + 1).

In other words, the Tile Assembly Model uses asynchronoussaif-timed updates to sim-
ulate any deterministic one-dimensional BCA. Similar anguts can be used to show that the
Tile Assembly Model can simulate ampn-deterministione-dimensional BCA, in the sense that
every possible aggregate produced according to the TilerAbl Model will represent a possible
history of execution of the non-deterministic BCA. In thise,R will contain rules with identical
left-hand sides, and consequently in some slots multigéetiles will match both exposed edges;
thus a non-deterministic choice must be made. Alternatizehon-deterministic set of input tiles
may be used to generate a combinatorial set of possible sipays, followed by deterministic
evaluation of each input. The potential for non-deternmmis important for using self-assembly
to solve combinatorial search problems in the spirit of Aulien (1994).

3.3.2 Implementation by Self-Assembly of DNA

We follow Winfree (1996b) in developing a molecular implertagion of the Tile Assembly
Model: each tile is represented by a DNA double-crossoveéd) {@olecule (Fu and Seeman 1993)
with four sticky ends whose sequences represent the edgks.|alve would like these molecular
“tiles” to self-assemble into a two-dimensional sheet adiog to the rules of the Tile Assembly
Model (see Figure 3.21). Thus, we need to show:

1. Double-crossover molecules can designed to self-ageemb two-dimensional crystal lat-
tices —in preference over, for example, random tangled hdies, or other structures. This
has in fact now been demonstrated in an experimental sysiénfrée et al. 1998).

2. The strengths of edge labels in the model can be implemdmnytelesigning the sticky end
sequences with specific energetics of hybridization. ThéDMbridization strengths de-
pend primarly on the number of base pairs, with adjustmemtshiir particular sequence,
the buffer conditions, and temperature. Thus, for exanipleger sticky ends can be used
to represent edge labels with greater strength.

3. The binding of DX molecules into slots, where two stickydesequences must both hy-
bridize, iscooperative— thus, strengths “add”. We will argue below that thisaigriori
likely; furthermore, suggestive experimental evidence been presented in Winfree et al.
(in press).

4. There is a physical parameter analogoud tavhich determines the strength required for
association of molecular tiles. This parameter can be Xamgple, the temperatuf®. DNA
sticky ends bind more strongly at low temperatures, and @sly, at higher temperatures
more sticky-end interactions will be necessary for stabditéon.

5. All these considerations can come together to producecutsr self-assembly in accor-
dance with the Tile Assembly Model.
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Figure 3.21: The DNA representation of Wang tiles. (a) A moalar Wang tile (double crossover
molecule) representing the rulg r) — (I’,7'). The molecule consists of an interior structural
region and four double-stranded arms, each terminated bggéesstranded sticky end. Edge
labels are implemented using unique sticky-end sequeridete that sticky-ends for the lower
edges use Watson-sense sequences for each label, whilepbeadges use the complementary
Crick-sense sequences. This ensures the proper relateration of tiles. As shown, the same
molecule represents both a Wang tile and its reflection atbeutertical axis; however, using four
encodings for each labeW(. 11, Wiight: Cieft, Crigne) €liminates reflection-sense binding. In the
double crossover molecule, the crossover points are direlad dots are placed at theends

of each strand. Color is used to indicate the edge label lreipgesented, and not the identity
of strands (each strand is multi-colored). (b) The seleagdy of 9 molecular Wang tiles, of 5
distinct types. These correspond to the 9 tiles at the bottbRigure 3.19c¢. Note that the corner
and boundary molecules have hairpin sequences, and thtiskyends, on certain of their lower
arms; this implements a tile with strength-0 labels on itgdbedges. Also note that on the corner
and boundary molecules, the red and orange sticky endsficiesuly longer than the sticky ends
on the rule molecules to implement a strength-2 interaction

Our approach for arguing these points is based on the stutig tfiermodynamics and kinetics
of DNA oligonucleotide hybridization (Wetmur 1991). We rew here the elements of this theory
that are needed for our discussion.

Let ssDNA and ssDNA be two Watson-Crick complementary oligonucleotides, atdi$-
DNA be the double-stranded helical complex that resultsnupeir hybridization. The reaction
can be modelled as a two-state first-order system:

ks
sSDNA, + ssDNA ki dsDNA

We can write a differential equation for the rates of charfgb®concentration of each species.
The units fork, are 1/sec, sb, [dSDNA| gives the rate in M/sec of dissociation of the double helix;
the units fork; are 1/M/sec, sé&; [SSDNA, |[ssDNA;| gives the rate in M/sec of hybridization to
form new double helical molecules. Altogether, we have:

_[dSDNA] = [sSDNA | = [ssDNAy] = k, [dSDNA| — k; [sSSDNA |[sSDNA]
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The rate constants; andk, can be estimated from the DNA sequence and the tempefBture
(in K), assuming the reaction is taking place in a standaff&bu~or very short oligonucleotides,
the forward reaction has a diffusion-controlled rate-deiging step (Quartin and Wetmur 1989)
approximately independent of oligo length and sequence, so

k= Ape Pr/M 6 % 10° IM/sec

whereA; = 5 x 10% /M/sec andE; = 4 kcal/mol is the activation energy for the reactién
The reverse rate, on the other hand, is very sensitive to tdiggth and sequence:

kT‘ _ kfeAGg/RT,

where R = 2cal/mol/K andAG¢ < 0 is the free energy released as heat by a single hy-
bridization everit®. The standard free energyG° can be calculated from the standard enthalpy
AH¢ and the standard entrogyS; of the reactionAG; = AH; — T'AS;. For reactions taking
place in commonly used buffers, the standard enthalpy amdmncan be reliably estimated from
the sequence according to a nearest-neighbor model (Samsakt al. 1996); however, for the
purposes of this discussion, we can use the coarser apgtamfor lengths oligonucleotide¥®:
AH{ ~ —8skcal/mol andA S5 ~ —22s — 6 cal/mol/K. Thus we can predict bo#y andk, for
the hybridization of complementary oligonucleotides. sThilows us to predict the equilibrium
concentrations of each species via the equilibrium constan

. [dSDNA| _ky .
~ [ssDNA][ssDNA)] k.

We will use our understanding of oligonucleotide hybridiaa kinetics and thermodynamics

to build a plausible model for the self-assembly of DX moleswia the hybridization of their

sticky ends.

—AG°/RT

3.3.3 AKinetic Model of DNA Self-Assembly

The self-assembly of two-dimensional lattices from a legeneous mix ofV DX molecules is a
far more complicated system than the hybridization of twigaiucleotides. Rather than having
just three species to consider (ssDNAsSDNA,, and dsDNA), we now have an infinite number
of species (all possible aggregates). For each aggregatdiles with m available sites, there
are N'm association reactions amddissociation reactions. Note that at every available #ire

is an association reaction for every possible monomerrdégss of whether the monomer is the
“correct” one or not; to understand when correct behaviorlmexpected, we must look closely at
the kinetics of all the reactions. The model we develop hanebe seen as an extention of Erickson
(1980), which considers the self-assembly of an isotropiw-dimensional lattice consisting of a
single unit type. To model the kinetics of self-assemblymeake several simplifying assumptions:

1. Monomer concentrations will be held constant. Furthémanomer types will be held at

$"We will ignore the activation energy in what follows, becawse will see that the value @f; has no effect on the
behavior of the system except to set the scale of the time axis

%The more negative\G? is, the more heat is released upon association and the marekee the reaction is.
Another way of looking at it is that i\NG? is very negative, a lot of heat must simultaneously convemg a single
double helical DNA molecule in order to cause dissociatimmg thus dissociation is rare. Also note that here, as
elsewheree¢® /" has an “invisible” unit of M, so thak, is in units of 1/sec.

%9The empirical valueAS;,.;; = —6 cal/mol/K can be considered the entropic cost of alignireyttho strands to
have the same orientation, and is called the initiationogaytr
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the same concentration. Primarily we make this assumptmadse the analysis is easier.
Later we show how the results found with the assumption cansed to understand the
more general case when the assumption is noftrue

2. Aggregates do not interact with each other; thus the agdgtions to model are the addi-
tion of a monomer to an aggregate, and the dissociation ofreomer from an aggregate.
Potential drawbacks of this assumption will be discussedeatery end.

3. As in the hybridization of oligonucleotides, we assumeg the forward rate constants for
all monomers are identical. In particular, the forward r@tastants for correct and incorrect
additions are identical.

4. As in the hybridization of oligonucleotides, we assumat tihe reverse rate depends ex-
ponentially on the number of base-pair bonds which must bkdur, and that mismatched
sticky ends make no base-pair bonds. This amounts to asguh@hbinding on multiple
edges is cooperative and that mismatched sticky ends ddfeot the dissociation rate in
any way.

The model is governed by two free parameters, both of whiehdamensionless free ener-
gies: G, > 0 measures the entropic cost of fixing the location of a monamér(and thus is
dependent upon monomer concentration), &id > 0 measures the free energy cost of break-
ing a single sticky-end bond; both are expressed with régpdbe thermal energyRT'. A third
parameter, the forward rate constant is immaterial to the behavior of the system; it sets the
units for the time axis. The behavior of the system can be nstoled independently of the exact
correspondence of these abstract parameters to moreticephiysical parameters; however, we
sketch the correspondence below.

For convenience, we lump location, orientation, and othtropic factors together into an
“effective concentration” of monomerfDX]. In these unitsjDX] = [DX]/20, I%f = 20ky, and
the initiation entropy ofAS;,;; = —6 cal/mol/K = — R In 20 disappears from the equations. Now
we write the concentration of each monomef@X] = ¢~ “=. Thus the rate of associations of a
particular monomer type at a particular site on a particatggregate is

ry= kf[DX] = /%femeC,

measured in 1/sec. To determine the dissociation rate oft&omnd byb sticky-end bonds, each
of lengths, we will use our assumption of cooperativity to justify ugithe free energy of a single
length# - s oligonucleotide AG} .. To write the dissociation rate in terms 6f,., we have:

Frp = kfeAGg_S/RT _ ]%fefb(}sej
also measured in 1/sec. Using the valuesAdi; and AS: determined for oligonucleotide hy-
bridization, sticky ends of lengthwould correspond t67;. = (% — 11)s. If strength-1 edge
labels are encoded with sticky ends of lengttb = 1), then strength-2 edge labels will be en-
coded with sticky ends of lengths (b = 2). If b is the sum of the strength of all a tile’s matching
edges, then the tile’s dissociation rate will g, and we will callb the number of (sticky-end)
bonds

The various reactions possible in this model, which we ¢allKinetic Assembly Model, are
illustrated for the Sierpinski Tiles in Figure 3.22.

“*There is some intrinsic interest in the case where the assomis true; for example, biological self-assembly
often occurs in the context where genetic circuitry corsttble concentration of the monomers via a feedback loop.
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Figure 3.22: The rates of reactions for various tile asgmiaand dissociation steps in the Kinetic
Assembly Model. Note that all on-rates are identical, amd diff-rates depend only upon the total
strength of correct edge matches. Mismatched edges ang emighbors are treated identically.

We now wish to understand the behavior of the Kinetic Assgrivtidel as a function of it two
free parametersz,,,. (controlled by monomer concentration) a@dg. (controlled by temperature
and by sticky-end length). Our naive prediction is that mmr%—f: plays the role off” in the Tile
Assembly Model. If for small < e < 1 h

G
T =" =ph—c¢
GSC
then for a tile withb matches at a site,
T_f — ebGse*Gmc — eeGse > 17

Trb
and the site will tend to be filled. But a tile with— 1 matches will have

T_f — e*(]*e)Gse < 1’

Tr.b

and the tile will tend to dissociate. Because at equilibritonthe local site, the correct tile
is preferred over incorrect tiles by a factor &fsc, we expect that for larg&,., the Kinetic
Assembly Model will with_high likeliness produce aggregatroduced by the Tile Assembly
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Model. To confirm this expectation and delineate when it i@gplwe will have to understand
when local equilibrium is achieved, when the kinetics woikour favor, and when it works
against us.

We begin our detailed analysis by simulating the behaviathefKinetic Assembly Model.
Because there are an infinite number of possible aggregpés,tyve cannot simply integrate
the rate equations to determine the time evolution of theeotmation of each aggregate type.
However, since aggregates do not interact with each otheigam develop our simulation from
the perspective of an individual aggregate, starting witthesen seed unit. Reaction rates now
become probability rates for a Poisson process: the aswwcia dissociation of a monomer from
the current aggregate. In such a simulation, the probglufibbserving a particular aggregate at
simulated time corresponds to the fractional concentration of that agajeegt timel according
to the full model.

The simulation proceeds as follows: A 2D array is used toestbe arrangement of tiles in
the current aggregate. Initially the array contains albgep indicate empty sites, except for the
origin, which contains the seed tile. To determine the neahg the rates of all possible reactions
must be known. Alln empty sites adjacent to the aggregate are counted; the mateois

For all occupied sitesi, j) within the aggregate (except for the seed tile at the origim tile
types of its neighbors are noted and the total strehgtiof all matching labels is calculated; the
net off rate isk,;r = >, kosrp Where

kf'off,b — Z /;_fefbiste_
ij S.t.b;j=b

Thus the net rate for events of any kindkig,, = k.. + kosr, and the time until the next event
occurs,At, is chosen according to the Boltzman distributiern At) = k(mye’“awAt. Now, given
that an event has occurred, the probability that it is anw@neisk,, /£y, in which case all
sites and all tile types are equally likely to be chosen; wtige a dissociation has occurred, and
the probability that some site withbonds dissociates is,¢7,/k.s ¢, and again all such sites are
equally likely. Once the event is chosen and the array istepodall rates must be recalculated to
determine the next evetit

3.3.4 Simulation Results

This section discusses simulations of the self-assembiieoSierpinski Tiles using the Kinetic
Assembly Model. An example run is shown in Figure 3.23. Savfieatures of this simulation run
warrant comment.

Shape: The growth front does not advance synchronously, but rgibgiorms a biased random
walk, with the following restriction: because stable additoccurs only at concave corner
sites (slots) on the growth front, no sites can be more thanstep ahead of or behind its
neighbors. The growth front is concave on average: the kemyrtdes grow fastest because
their growth site is always available, while internal raggan the growth front grow slower
because stable addition can occur at only a fraction of attasy given time.

“IThe actual computer code is optimized to remove redundécilesions, of course!

www.manaraa.com



66

Errors: For the most part, the Sierpinski Triangle is accuratelyadpced. However, incorrect
tiles do appear. In the first three frames, incorrect tiles loa seen on the border of the
aggregate. These are inconsequential errors due to thé @uuates of all tiles; they will
fall off immediately and cause no permanent errors. Howeawaethe last frame we see an
incorrect tile which has been embedded within the aggregdiigough it has a mismatch
with its predecessors, successive tile additions have beactwith respect to the errgr
and now the erroneous tile has 3 matched edges. It has cayszthanent error, and the
misinformation spreads to all downstream cells in the catapan.

Array Size: In the last two frames, the size of the aggregate has excdbdesize of the array
used in the simulation. Thus the Kinetic Assembly Model is perfectly simulated; a
maximal size of aggregate is imposed. In the simulationsvijethis does not affect the
results in the region of interest, but it does explain thestamt size (the maximum) found

during fast, random aggregation.

Zp

o

Figure 3.23: Growth of the Sierpinski Triangle. Greyscaldicates the tile type in the aggregate.
The simulation uses parametérs, = 8 and7 = 1.95, and the seed is a corner tile. These values
correspond to monomer concentration giBlandr; = 2/sec, with sticky ends of length 5, and
T = 45°C; the frames show growth after 9, 18, 36, 63, 99, and 162 skscon

To map out the parameter space of this model, simulationkeoBierpinski tiles were per-
formed for all1 < G,,., G5, < 30. Each simulation was run fdi0/r; simulated seconds, thus
on average each unoccupied site could experience up to &0ants of each type; consequently,
the distribution of aggregate sizes is comparable acrdéerelit parameter values. Figure 3.24
shows the results for (a) aggregates seeded by the comamnt (b) aggregates seeded by a rule
tile, indicating both the resulting size of the aggregate e number of errof8 in the aggregate.

“2What's actually calculated is the number of erroneous (ratsired) bonds, not the number of erroneous (incorrect
with respect to their neighbors) tiles; a single misplaadd tile could be responsible for 4 such mismatched bonds.
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Figure 3.24: Phase diagrams for the Sierpinski tiles as cbeapby simulation: (a) aggregates
seeded by the corner tile, and (b) aggregates seeded byt#eueach disc represents the results
of a single simulation on a8 x 28 array; the size of the disc represents the final size of the
aggregate, while the shading represents the number ofseaoml fraction of total size. Each
run was given the same “unitless” time; thus wh&p.. is high (corresponding to low monomer
concentration and thus slow assembly) more time is alloweetthat error rates can be compared
easily. Solid black indicates zero errors. We see threarregi 7 > 2 regime (no growth),

1 < T < 2regime (includes error-free assembly nfae= 2), and7 < 1 regime (uncontrolled
random growth to maximal size). Note that the= 1 transition is smooth, and hence is not a true
phase boundary.

The lines show] = %—m = 2 and7 = 1, which we will respectively call the melting
transition and the precipita'fieon boundary. Above the mgltransition, no aggregates grow from
either seed. Below the precipitation boundary, monomessdaate freely to produce random
aggregates similar to those produces in the Tile AssemblgeViat7 = 1. The rate of growth
of random aggregates appears to fall off exponentially alitbe precipitation boundary; this is
indicated by the decreasing size of aggregates seeded by @leun (b) and by the decreasing
error rate within aggregates seeded by the corner tile inl{a@ result is that there is a large region
of parameter space where simultaneously (1) growth doag,d@) errors are rare, and (3) growth
notinitiated by the corner tile doasot occuf®. We call thiscontrolled growth

We are particularly interested in the behaviour of the Kimassembly Model near the melting
transition. Figure 3.25a shows the size and number of ea®isfunction of7,., for G,,. = 16.
Upon passing the melting transitio’{, = 8), the size of aggregates seeded by the corner tile
grows dramatically, whereas aggregates seeded by theilesldot not grow untilG,. ~ 12,
at which point all aggregates are overwhelmed with errorber& are a few isolated instances
where aggregates seeded by the rule tile grow unusuallg g7 .. near 8; in these cases, the
aggregate has incorporated a boundary or corner tile, walichivs for further growth. Errors

However, at low error rates these two measures are equivaie®0%” means 1 mismatched bond per tile; the error
rate therefore could exceed 100% for optimally misplacked tibut it does not do so in these simulations.

“3Starting with a boundary tile as a seed, growth would ocauirwwuld soon incorporate a corner tile and produce
a proper Sierpinksi triangle.
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Figure 3.25: (a) Simulation results fat,,. = 16 for aggregates seeded with the corner tile and a
rule tile. Note that for largé+., where random aggregation is occurring, the aggregatesgtow
fill the entire28 x 28 array. (b) Errors, as a fraction of aggregate size, alonditiee,,,. = 16.

(c) Errors along the ling” = 1.9, using a38 x 38 array. Because log axes are used, data points
where the aggregate had zero errors are not shown.

appear to decrease exponentiallyas — 8 (Figure 3.25b). Figure 3.25c shows the behavior
along7 = 1.9, where the system is sufficiently far below the melting tigams to grow quickly,
and yet sufficiently close to the melting transition to get krror rates; again, errors appear to fall
exponentially withG..

In conclusion, it appears that with probability of error exgntially low inG,., the kinetic
model at7 = 2 — e reproduce¥ the Tile Assembly Model & = 2.

4To account for the possibility that the Tile Assembly Modebguces many distinct aggregates, we note that the
probability that a size+ aggregate produced by the Kinetic Assembly Model is notjaleduced by the Tile Assembly
Model is exponentially low.
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3.3.5 Analysis

Equilibrium error rates. We would like to understand why the Kinetic Assembly Moded-pr
duces these results. We begin by analyzing the equilibriancentrations for the reaction equa-
tions. Consider an aggregate= T - A’ where the tilel’ hasb bonds withA’. At equilibrium, the
principle of detailed balance tells us tfrat

[A] Ky

b s BTy

— — — Gme—bGse )
[ATT] - ke AT ke

= ef( .

Calculating equilibrium concentrations from any orderitef &ddition steps yields the same result,
so we can calculate the concentrationdf= TT; - - - T;, from any sequence of additions for
producingA. Letb; be the number of bonds for the addition

TiTipr Ty ~— Ty + Tiy1--- Ty,

and leth, = Z?;ll b; be the total strength of all matching edges in the aggregdten,

7] T [Ty T[T 1] 7]
= ei(Gm67bl Gse)ei((}mcilm(;se) P ef(Gmc*bn—lee)

~((n=1)Gme—baGae) _ o= ((n=1)T~ba)Gse_

= € =€

So we see that the concentrations of aggregates ;lkgﬁh > T will grow with n, while the
concentrations of other aggregates will shffhkWe would like to make a prediction for error
rates based on the equilibrium assumption. To do this, weréthe total concentration, and just
ask, “Of all material containing size aggregates, what fraction is without errors?”

To compute this, we must know the valuetof for aggregates of interest. Note that for the
Sierpinski Tiles, any aggregaté, produced by the Tile Assembly Model @ = 2 (i.e., an
aggregate with O errors) has exacdhly, = 2(n — 1) because every tile addition step contributes
exactly 2 bonds. Furthermore, all other aggregates mustias 2(n — 1) — by > 0, a measure
of their suboptimalit§’. Aggregates with smalt: look like perfect Sierpinski aggregates, but
with a few internal errors. For size aggregates, one perfect and one suboptimahby

[A,] e (=0T —bay)Gac

[A)] ¢ (DT bag)Gee €

—mGge

This at least partly explains the absence of aggregategddwdrule tiles: any aggregate consist-
ing entirely of rule tiles must haver > 2y/n — 2, and thus their equilibrium concentrations are

“Note thatr is constant because all monomer concentrations are equidiedeh constant, while, , depends o
for the particular reaction.

46Recall that we are assuming equilibrium has been reachieeh tierally, this is patently absurd when at equilib-
rium the concentrations of aggregates grows exponentidtly their size. The implication is that in order to hold the
monomer concentrations constant, we must continually beiging new material into the system; this new material
flows through the system to create larger and larger aggregat

4"This can be seen by noting that < 2# (rule tiles +corner tiles) 4 2.5# (boundary tiles) where the deficit is
due to internal mismatches and to the “surface energy” ofatohed edges on the perimeter. An aggregate consisting
exclusively ofn rule tiles will have perimeter at least/n, and thud 4 < 2n — 2v/n andm > 2,/n— 2. An aggregate
with g 4+ 1 boundary and corner tiles will hax2mismatched or unmatched edges terminating the boundarafid on
the perimeter at leagtumatched edges; thus > 0.

www.manaraa.com



70

exceedingly lof®.
To compute the fraction of all size-material which is errorless, we must kndwow many
aggregates of each kind there are. hgt be the number of distinct size aggregates of sub-

optimality . Then a size: aggregate chosen from the equilibrium distribution is dess with
probability

no [A()] N 1

Prq(errorless aggregateln) = S e A] S0 B mG
m= m=U ng

For smallm, we can estimaté;% by noting that for each perfect aggregate of sizeve can make

~ (3”;) suboptimal aggregates by inducing errorgrainternal edges, and completing the rest of
the pattern properly. Thus,

1 1
Pr.,(errorless aggregate|n) ~ = ~1—2ne G
eq( ggreg ‘ ) %:U (Z)e,m(;se (1 + 67G56)2n

We can see thabr.,(errorless aggregate) =~ % atn = %eG“. Since theG,, is determined
by the length of sticky ends, we see that by increasing st&ig length, we can exponentially
increase the size over which errorless computation can jpectésd to occur.

We could have arrived at the same conclusion more simplylesstrigorously, by assuming
that all tile additions occur in slots and the tile is chosalependently from the local equilibrium
distribution. (A site is inlocal equilibriumwhen the tiles (or their absence) at neighboring posi-
tions do not change, and all tile addition and tile dissdamateactions involving the site are in
equilibrium.) Then,

1 " _
Preq(errorless aggregate|n) = Pr.4(errorless step)” = < e ~1—2ne %,
Tse

Note that this analysis, based on assumptions of equitihrpredicts that error rates are unaf-
fected byG,,,.. This was not the result of our simulation: error rates insgeedramatically a§',,,.
drops below the melting transition (i.e., as monomer cotraéion increases). Consequently, we
conclude that equilibrium inotachieved in these cases.

The kinetic trap. What prevents the system from achieving equilibrium? Tlition is that
if the growth of the crystal is faster than the time requiredacally establish equilibrium at the
growth sites, tiles will become embedded and “frozen” in ithterior of the aggregate with an
out-of-equilibrium distribution.

How long does it take for a growth site to reach local equiilil'? Consider a growth site that
has just formed, and assume that the local context (neigithtles) does not change. Monomer
tiles of all kinds will sit down at the site, stay a while, afh leave, each according to its own
off-rate. If we look immediately after the growth site appgdhe probability that the site is empty
is near 100%; however, if we wait a very long time before logkiwe will find each tile, or an
empty site, with their equilibrium probabilities. If thedal contextdoeschange by addition of
tiles surrounding the growth site, then the tile currentiyplace can be “frozen” there effectively
permanently; even if it has one mismatched edge, three esioh its other edges can make its
off-rate very low. Although this is a very cartoonish piauit is the basis for our analysis, since
the full system is too complex to treat rigorously.

“8The concentration of a rule tile aggregate is bounded by A, ]/[T] < (T +em=2V™MGse which has a minimum
of [A,]/[T]. < e T ~1/)Cse at g, .0 = € 2. (Recall thatT = 2 — e.) The concentration at the critical size, which
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Figure 3.26: Model for kinetic trapping at a single growttesia) Simplified model for the filling
of a new site. In stat& the site is empty; in stat€ a correct tile is present; in statéan almost
correct tile (with one mismatch) is present; and in sfaétile with several mismatches is present.
The sinksF'C and F'T represent frozen correct tiles and frozen incorrect titespectively. (b)
The approach to equilibrium distribution at the site, assignthe site has not yet been frozen. The
vertical bar marks the expected time at which the site wilfrbeen.

Let's look at the probability of a particular tile being pesd in the site as a function of time,
prior to the site being frozen. For the Sierpinski Tiles,foases must be distinguished?) The
site is empty. The “off-rate” of emptiness is; = 7kye  “m¢, since there are 7 tile.C) The
correct tile is in place. It's off-rate i8, , = kfe*m“. (A) One of two tiles with just one match,
and off-rater, ; = kre~%=. (1) One of 4 tiles with no matches, and off-ratey = k;. Letp;(t)
be the probability thati) is the case seconds after the growth site has appeared, assuming the
site has not yet been frozen. The rate equations for the nioééjure 3.26a, excluding the sinks
FC andFI, can be written as

—Try  rro Tl Tr,0 pe(t)
. rg  —rpp 0 0 po(t) | .
t) = ’ = Mp(t
p(t) w0 om0 pal) p(t)

dry 0 0 —Tr0 pi(t)

and thusp(t) = eM'p(0) wherep(0) =[1 00 0]7.

The behavior ofp(¢) is shown in Figure 3.26b. We want to know the probability ttiee
correct tile is in place when the site is frozen. During coldd growth, the rate of growth
is approximatelyr* = r; — r,o; thus a given site will be frozen in mean time approximately

t* = 1/(ry —r.2). With a decrease it¥,,,. (increased monomer concentration),increases, and
t* becomes earlier, leading to a more out-of-equilibrium émzlistribution.

By including sink state$’C and F'I into the model of Figure 3.26a, we can solve exactly for

becomes a kinetic barrier to the formation of larger aggiegjéErickson 1980), approaches zergas» 2.
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the frozen distribution. In this case the equations are

[ —=Try 7.2 Tr1 Tr0 0 07 ( pr(t) ]
T T —1F 0 0 0 0 pc(t)
o | 2ry 0 —rpq — 1" 0 0 0 pa(t) | .
p(t) = 4r 0 0 —rpo—1% 0 0 pr(t) = Mp(?)
0 r* 0 0 00 prc(t)
L 0 0 T T 0 0] LpFl(t) J

wherep(0) = [1 000 0 0]". The probability of the site being frozen with the correde,ti
prc(o0), can be easily computed from the steady-state of the refemedoroblem, where a unit
amount of material is pumped into stdfeand accumulates differentially iRC' and F'I:

p(00) = [1000pre(00) prr(o0)]” = Mp(0).

A little algebra gives the probability of an errorless stegarms ofGs. andG,,,.:

1

. 4T
Pryin(errorless step) = pro(o0) = — S 1
L o ) + r*+re 1 + r*+rr0

In this equation for errors due to kinetic trapping, in castrto the equilibrium prediction, the
error rate depends updmothG. andG,,,.. The equation predicts error rates that are in qualitative
agreement with the simulations, as shown in Figure 3.27hifanalysis, it becomes clear that in
the limit as7 — 2 and thus* — 0,

1/7"r,2 N 1
Vrro+2/reg +4/r0 T 14+ 2¢ Gse”

Pryin(errorless step) — Preg(errorless step) =

Thus equilibrium error rates are achieved ngae 2.

log error rate, simulated log error rate, theoretical

0 G G 00 Gse

mc se mc

G 0

Figure 3.27: (a) Log, per-step error rates, estimated from simulations. (b);Lqeer-step error
rates, according to the kinetic trap theory.
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Speed of assemblyWe have already observed that the forward rgte= l%fe*GmC depends
upon monomer concentration, and consequently, as our rtes improve with increased,,.,
simultaneously the speed of computation drops dramaticallow that we have an analytical
expression foPry;, (errorless step), based upon our simplified kinetic trap model, we can de-
termine the conditions which achieve a given target errte s#awith the fastest rate of assembly
=T =12

1

r*+re2
1+ 2T*+7'7‘,1

1 — & = Pry,(errorless step) =

and thus for smalt and2G,. > G > G,

~
~

*
A ~ 2e (Gme=Goc) = 9= AG
r* + Tr,1

To achieve error rate, the system can be run anywhere along a line parallél to 1 but displaced
by AG = In2/e above it. Where along this line does self-assembly proceest rapidly? We
find the maximum of

r* = I%f(ef(}mc _ 672(155) _ ]%f(efAGste _ 672(155)

by differentiation with respect tdG ,.; optimal growth for constanf\ G occurs at

4 8
Gse=AG+In2=1In- and Gp=2AG+In2=1In—.
3 3

The optimal growth rate* = 'f—g g2 =~ 0.75 x 10°€? /sec occurs on the linés,,. = 2G5, — In 2.
Thus it appears that we have a hard physical limit on what eates can be achieved by DNA
self-assembly within reasonable time limits. If we wish &vé a net forward rate of 1 tile added
per second, then the best we can achieve is an error rate @@/Wwhile if we were willing to
wait half an hour for each addition, we could get an error wdt8 x 10—, and we could grow

some perfeck00 x 200 aggregates over the course of a week.

3.3.6 Discussion

The above simulations and theoretical arguments both cortfiat in the Kinetic Assembly
Model, aggregates can grow with finite speed and arbitrdoily per-site error rates for large
Gs. andT = 2 — e. We should be careful that the analysis does not depend tyequatticulari-
ties of the Sierpinski Tiles. It can easily be verified thahi rule tiles usé labels (instead of the
2 labels used in the Sierpinski Tiles) and there are a tot&¥ d@fles (instead of the 7 Sierpinski
Tiles) then the analysis is unchanged except that

Pr,(errorless aggregate|n) ~ 1 — 2(k — 1)77,6’7(;“
and
1
r*+r. 2 N (GG
Pryy (errorless step) = — o v oL 2k e ( )
’I"*—|—1"TY2 + ,r*+1,.h1 + 7"*+7“r,o

In2(k—1)
€

and the optimal growth rate now occurs displace@ =
discuss other aspects of the model.

aboveT = 1. We now loosely
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Figure 3.28: Analysis of the phase diagram for 2D self-asdgntines mark the melting transi-
tion 7 = 2, the precipitation boundary = 1, a line of constant error ratg,,,. = G, + AG,
and the line on which optimal growth rates occiy,. = 2G4, — In 2.

Energy use.Reversible computers have the potential to compute ushitramily little energy
per step, because no information is erased during the catiquitself (Landauer 1961; Bennett
1973). The system described here uses only fully physigalersible reactions, and thus is
a candidate for low-energy computation; although nonsstlte 1D cellular automata may be
simulated, the 2D pattern records a history of the entirepration, and thus no information is
lost at any step. During controlled growth’At= 2 — ¢, the amount of energy used by the system
equals the free energy lost as heat on each step:

—AG® = —(Gpme — 2G4e)RT = eG4 RT.

For any fixedG,., error rates and energy use are simultaneously minimizéideaselting transi-
tion is approached.

An entropic ratchet. What happens &t = 2 exactly? We already know that &t = 2, opti-
mal equilibrium error rates are achieved and no energy id tespower each step; the probability
of going backwards is identical to the probability of goirgpfiards. In a 1D reversible compu-
tation, like that imagined by Bennett (1973), the randomkweabuld lead to no net computation
performed. However, in our 2D system, the number of possbierless size: aggregates grows
with n. Thus, as the state-space is explored at equilibrium, itagientropically driven to perform
computation! This oddity deserves further attention towkether it would still be present in a
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more realistic model.

Experimentally accessibly regimes.We have already developed the relation between our
abstract parameter§,,. and G, and relevant parameters of a real system, such as monomer
concentration and free-energies of hybridization; Figsu23 showed that low error rates can be
achieved for realistic parametéfs given our assumptions. We can make our arguments more
realistic by considering what happens as a solution of mamsns slowly annealed from a high
temperature to a lower temperature. Atany moment in timeplatethe current reaction conditions
as a point on Figure 3.24 to determine the rate of growth andtee error rate. Suppose initially
Gme = 12 andGy, = 5; here, above the melting transition, the monomers arees! iin solution.

As the temperature decreasés,. will increase, and our point follows a horizontal trajegtor
straight toward7” = 2. Just below the melting transition, the aggregate will gfewth optimal
error rates for the currert¥,.). Consequently, the monomer concentration will drop, @ng will
increase, bringing the system back towdrd- 2. So long as the temperature drops slowly enough,
the system will stay just below the melting transition, and@oint will follow a trajectory parallel

to 7 = 2. Thus, by annealling, the self-assembly process will aataally maintain itself in the
regime where errors are most infrequent. Optimal anneaitgedules are an issue for future
investigation, and to be of practical use they will have tetaccount of the non-idealities of the
system.

Imperfections of a real system.The careful reader will immediately observe that the concen
trations of different tiles will be depleted at differentes, thus breaking our original assumption
that all tiles are present at equal concentrations. Thisntibduce additional factors into the error
analysis. There are many other ways in which real systeniglexiate from the Kinetic Assem-
bly Model. Free energies of hybridization for differentckiy-end sequences cannot be perfectly
matched, so the melting transitions for different tilesl differ slightly. Worse yet, imperfectly or
partially matched sticky-ends may contribute to the freergey of interaction between tiles with
mismatched edges, in violation of the model’'s assumptiandhly correctly edges contribute to
AGY . Itremains to be determined how important these factors are

Cooperativity of binding. The Kinetic Assembly Model makes a strong assumption that tw
binding sites on the same tile will act cooperatively whardig to an aggregate. Specifically, itis
claimed thatAGs ;... = 2AGT ,,.4- There are three points to make. First, the rigidity of deubl
crossover molecules, as demonstrated by Li et al. (199§pesis that the binding events should
act together — in particular, the slot-filling event duringjper growth should be cooperative. This
intuition can be bolstered by estimating the “effectiveabconcentration of the remaining sticky
end after one end has bound — giving an estimate for the additiloop entropy”(Cantor and
Schimmel 1980, p. 1205) required to close the second endeirslti. Since double-stranded
DNA has a persistence length of approximately 130 nt (CaamtdrSchimmel 1980, p. 1033) and
DX molecules span roughly 40 nt from end to end, the physishdce between the sticky ends
may fluctuate from 12 to 14 nm, thus exploring a volume~of000 nm?, with the free sticky
end assuming perhaps a range80f x 30° orientations at each position. This corresponds to an
effective concentration of

Isticky end  (10%* nm® x 3602 deg?) /liter

- = 60mM
4000 nm3 x 900 deg? 6 x 1023 sticky ends/mol

Cerr =

and thus aloop entropS,,, = RInC.r; = —5.6 cal/mol/K. This value is comparable with the
initiation entropy ofA S;,,;; = —6 cal/mol/K. At27°C itincreases the free energy of interaction by

4G me = 30 is an example of an unrealistic parameter: at 2 pM= 2 x 10~° /sec and monomer addition will
occur only twice per day.
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1.68 kcal/mol, which roughly offsets the contribution of a siedlase-pair bond-<(1.4 kcal/mol).
The deviation from perfect cooperativity should be negligj according to this estimation. Exper-
imental studies should be able to measure the extent of catbyy; the preliminary experiment
reported in Winfree et al. (in press) argues qualitatively dooperativity in an analogous DNA
system.

Second, it is possible that in addition to free energy dugitdysend hybridization and due to
loop entropy, there could be enthalpic contributions tglomsure, for example, if the double he-
lix must be twisted, stretched, or otherwise deformed ireotd fit into the slot. Double crossover
molecule tiles can be designed with the intention of miningzhese anticooperative effects, but it
remains to be seen how well that works. It may also be possit@&ploitanticooperative effects
to enforcenegative interactiongor mismatching edge labels. This would require using diffe
ently sized double crossover molecules, for example bygihgrihe lengths of the four arms, so
that geometric mismatches are present in addition to sécid/sequence mismatches. It may be
possible this way to implement a tile assembly model withatigg weights.

Third, just as the initiation entropy was folded into the tedst GG, and G, parameters, a
loop entropy or mild anticooperative adjustment could bemaup by adjustindr,,. andG;, to
reproduce the on-rates and off-rates for the most impodanble-match and single-match cases.
The simple model would be inaccurate for the off-rates @fstivith more than 2 bonds, but as
these tiles seldom dissociate for parameters of intet@stjrtaccuracy is irrelevant.

Alternative reaction mechanisms. The Kinetic Assembly Model assumes that the growth
of aggregates occurs by addition of single monomers onlythns that there are no interactions
between aggregates. Reaction mechanisms would not dfeeqjuilibrium error rate predictions,
but Rothemund (personal communication) has emphasizedithar-dimer pathways, or other in-
teractions between aggregates, could be very importarnihédkinetics of self-assembly, and thus
their inclusion could affect kinetic trapping in theory aindoractice. Indeed, Malkin et al. (1995)
have directly observed, by AFM, crystal growth by sedimgataof small three-dimensional nu-
clei.

It is also possible — perhaps | should say probably — thatretize reaction mechanisms are
present for creating non-planar structures, such as tubemdom three dimensional networks.
Indeed, experimental studies attempting to create 2Dcéattof DX molecules (Winfree et al.
1998) found, for example, occasional unexpected rod-likecgires in addition to the expected
planar 2D crystals.

3.3.7 Conclusions

We have used a pair of simple kinetic models to understamd extes in the self-assembly process
for algorithmically-defined 2D polymerization. Our resulend credence, in lieu of a full exper-
imental demonstration, to proposals (Winfree 1996b; Wiafet al. in press) for computation by
self-assembly of DNA: we have found that 2D self-assembtytbaoretically support computa-
tion with arbitrarily low error rates. This answers a questraised by Reif (in press), who was
concerned that, as in tife = 1 example of Figure 3.19, an unfortunate sequence of tiletiaddgi
could lead tablockageswvhere no tile can fit into an empty site without a mismatch. W that
blockages are not a problem in our model, but the thermodicsaof DNA hybridization give rise
to an intrinsic per-step error rate. Large computationsiiregjow concentrations and hence very
slow growth rates. This is the algorithmic equivalent of thet, in conventional crystallization,
that large perfect crystals form under conditions of sloavgh near the solubility line (Kam et al.
1980).
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A few worked-out examples for the case of the SierpinskisTaee illustrative. From our
investigations of kinetic trapping, we found that thererisoptimal growth rate* for every target
error rates. At this growth rates = 4e~%e, [DX] = 2.5¢2 M, andr* = 0.75 x 102 /sec, where
0 < Gye = (220K —11)s ~ —~AG°/RT for the hybridization of a single sticky end of length
s. Assemblies of:,,,,, = 1/¢ tiles would be expected to contain one error on averagee tisean
inverse relationship between the rate of assembly and thectad size of error-free aggregates.
For example, sticky ends of length 5 at room temperature @iye= 12 andn,,,,, = 40000,
but requires a concentration @X] = 1.5nM and thus a rate* = 1.6 /hour. The same system
could be run at7°C, whereG,, = 14, [DX] = 30 pM, 14 = 300000, andr* = 0.71/day;
or at45°C, whereG,, = 8, [DX] = 4.5 uM, nyq, = 750, andr* = 1.35/sec. Under the latter
conditions, a non-deterministic set of DNA tiles in a reasaa volume [ ml) could give rise to
10" distinct 300-tile aggregates in under a minute, that(s} operations per second. This would
be sufficient for solving a simple 40-variable SAT problemsofppsequent ligation and PCR to find
the answer-containing strand in the “good” aggregate. Hewdor this application an additional
source of errors would be false-positives due to non-anaggregates which, because of an error
during assembly or during PCR, appear to be “good;” an autwiti error analysis is required in
this case.

What are we to do if we want faster and less error-prone coatipnt? Reif (in press) suggests
using a combination of autonomous self-assembly and sisp-processing; his ingenious con-
structions perform a computation in a series of self-as$estbps each of which only requires the
formation of small aggregates. Because the number of ssegepi low (for example, computing
a circuit of sizes requiresO(log s) self-assembly steps), there is promise for asymptotidsatyer
error rates; however, a detailed analysis remains to be, doiemay be difficult due to the lack of
experimental evidence for the complex DNA structures affdassembly reactions he proposes.

Is it possible to get faster and less error-prone computdtican autonomous self-assembly
system? Biology makes use of an energy source to improve rates by “proofreading” mecha-
nisms (Kornberg and Baker 1991). Kinetic proofreading namisms can be fairly simple (Hop-
field 1974); it would be interesting if such a mechanism cdwtddevised to mediate the self-
assembly of double-crossover molecules. Alternativaig can accept the intrinsic error rate and
try to devise error-correctinglgorithmswhich could improve the overall error rate exponentially
with a slowdown only linear in the number of extra tile types.
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Chapter 4 Experiments with DNA Self-Assembly

4.1 A Competition Experiment: Slot-Filling

Abstract® In this section we examine the question of whether the twd-bin
ing domains in the input region of a rule molecule act coojpexty during a
slot-filling reaction. A well-defined DNA system has beenigesd to model
a single slot analogous to the one in a growing lattice. Thtesy consists
of three logical piecesABC, D, andD. DandD' model rule molecules which
match either both or just one of the slot’s two sticky endsus by competing
DagainD, we can determine the extent of the preferenceXfowrerD for fill-
ing the slot. By analyzing ligation products, wherein a elbgircular species
indicates the correct insertion @fin the slot, we observed th& was pre-
ferred even in the presence of a 64-fold exced® of his is strong suggestive
evidence that the slot-filling reaction in lattice formatiis also cooperative,
as is required for our model of computation by self-assembly

The theoretical studies of previous chapters only pointhpossibility of algorithmically-
patterned lattices of DNA. There are two major issues to bestigated experimentally. The first
is whether homogeneous lattices will form; i.e., whether geometric structure itself will self-
assemble. The second issue is whether, in the presence tgblmuhits in solution, the logically
correct unit will hybridize in each slot. This competitiveopess for filling each slot is essential
for computation, as a single error can propagate througtimientire computation. Ultimately,
error rates will determine the size of lattice in which rble.computation may be performed.

We have begun an investigation of the second issue. We fitdtdomodel molecular complex,
called ABC, which contains a single slot and no other sticky end®C is composed of two
double crossover molecules, and C, and a duplex linkeB. ABC is created by ligating eight
oligonucleotides; the final structure contains four hylzed strands. Rather than test the assembly
of a double crossover unit in#BC's slot, we model the unit by a linear duplex “linker”, calléd
WhenABC is properly hybridized td, we call the compleXABCD. Completely ligatedABCD is
a complex catenane with four interlocked circles. To testgpecificity of the hybridization, we
also have a mismatched linkBt, which is perfectly complementary to only one of the stiekyds
in the slot. We expect thalBCD' cannot be completely ligated, due to the mismatch, andéenc
ABCD does not form a catenane. These molecular complexes ageadiad in Figure 4.1.

Experimentally, we must establish that the double crogsmadeculesA andC form properly
upon annealing their component strands. As developed im&&aeman (1993), where the details
of hybridization were probed by more extensive structutaracterization, a good indication of
proper association is a single band of mobility in a non-tiemag gel appropriate for the topology
and molecular weight. The ligation produ&BC, ABCD, andABCD' (by which we mean whatever

!Results in this section also appear in Winfree et al. (ing)reand include joint work with Xiaoping Yang and
Nadrian C. Seeman, as described in Chapter 1. Thanks to Joélsagh for generously providing laboratory facilities
at Caltech for some of the experiments reported here.
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A1 (88 nt) = TAATGTGCCTGACCGCCTTACTTTTGTAAGGCGGTCACCGAATTCCGACTTTTGTCGGAATTCGGACGCCTAACGTGGACACCGCGAC
A2 (52 nt) = GTAAGCTTCCTGTCCACGTTAGGCGTGGCACATTAGTCGCGGACTTAGACAA

A3 (32 nt) = GGATGGTTGTCTAAGTGGAAGCTTACCGCATC

Bi (64 nt) = CCATCCAGCGTTGACACGTCTGCGTAACTCACGGTAGTGTAAACCTTGATTGAATCGGCAGTAC

B2 (52 nt) = CCGATTCAATCAAGGTTTACACTACCGTGAGTTACGCAGACGTGTCAACGCT

€1 (80 nt) = TGCATCTGGACCTCGAGACTTTTGTCTCGAGGTGGTTCGCCGCTTTTGCGGCGAACCTGAACACGAACGTGGTGGATCAC
€2 (52 nt) = GAGTCGACGGACCACGTTCGTGTTCACCAGATGCAGTGATCCTGCATATGAC

€3 (32 nt) = CTGAGCGTCATATGCACCGTCGACTCGTACTG

D1 (64 nt) = GCTCAGCCGTGCTAATCCAACTCGGTACCTACAGATACGATGGACTGGTTAGATAGGTGATGCG

D2 (52 nt) = ACCTATCTAACCAGTCCATCGTATCTGTAGGTACCGAGTTGGATTAGCACGG

D1’ (64 nt) = GCTCAGCCGTGCTAATCCAACTCCTGCAGTACAGATACGATGGACTGGTTAGATAGGTCAACAG

D2’ (52 nt) = ACCTATCTAACCAGTCCATCGTATCTGTACTGCAGGAGTTGGATTAGCACGG

Complex ABC: A B 4

TTGTCGGAATTCGG-ACGCCTAAG\/CACCTGT-CCTTCGAATG CAGTATACGT-CCTAGTG\ TGCATCTGG-ACCTCGAGACTT

TTCAGCCTTAAGCC TGCGGATTC/\GTGGACA GGAAGCTTAC-CGCATC CTGAGC-GTCATATGCA GGATCAC \ACGTAGACC TGGAGCTCTGTT
) C ( )

TTGTAAGGCGGTCA GGCACATTA\ CAGCGCC TGAATCTGTT-GGTAGG TCGCAACTGTGCAGACGCATTGAGTGCCATCACATTTGGAACTAACTTAGCC GTCATG-CTCAGCTGCC TGGTGCA\/TCGTGTTCA GGTTCGCCGCTT

TTCATTCCGCCAGT-CCGTGTAAT \GTCGCGG-ACTTAGACAA CCATCC-AGCGTTGACACGTCTGCGTAACTCACGGTAGTGTAAACCTTGATTGAATCGG-CAGTAC GAGTCGACGG-ACCACGT/\AGCACAAGT-CCAAGCGGCGTT

Complex ABCD: A D/B c

TTGTCGGAATTCGG-ACGCCTAAG\/CACCTGT-CCTTCGAATG GCGTAG-TGGATAGATTGGTCAGGTAGCATAGACATCCATGGCTCAACCTAATCGTGCC-GACTCG CAGTATACGT-CCTAGTG\ TGCATCTGG-ACCTCGAGACTT

TTCAGCCTTAAGCC TGCGGATTC/\GTGGACA GGAAGCTTAC-CGCATC ACCTATCTAACCAGTCCATCGTATCTGTAGGTACCGAGTTGGATTAGCACGG CTGAGC-GTCATATGCA GGATCAC \ACGTAGACC TGGAGCTCTGTT
) C C )

(TTGTAAGGCGGTCA GGCACATTA\CAGCGCC TGAATCTGTT-GGTAGG TCGCAACTGTGCAGACGCATTGAGTGCCATCACATTTGGAACTAACTTAGCC GTCATG-CTCAGCTGCC TGGTGCA\/TCGTGTTCA GGTTCGCCGCTT

TTCATTCCGCCAGT-CCGTGTAAT \GTCGCGG-ACTTAGACAA CCATCC-AGCGTTGACACGTCTGCGTAACTCACGGTAGTGTAAACCTTGATTGAATCGG-CAGTAC GAGTCGACGG-ACCACGT/\AGCACAAGT-CCAAGCGGCGTT

W WW CE% Si Silg i% Si
Al A3 B1 : :: : :: :: :: :: :: :: :: B2 \ c2
14 16 10 6 6 6 10 16 12

52 6

84

Figure 4.1: Sequences and Structures ABCD. Sequences are written 5’ to 3. 3’ ends are
denoted by arrows in the diagrams, and strand labels areSheads. Lengths are measured in
nucleotides. Above, sequence details are given along eftbraatic representations ABC and
ABCD (not ligated). Below, more geometric detail is sketchedXpB, C, D, andABCD (ligated).
Diagrams illustrate intended structures only.

it is we get when we intend to make structufd3C, ABCD, andABCD respectively) are examined
both in non-denaturing and denaturing gels; in the formeraveelooking for a single band of
approximately the correct apparent molecular weight, avirilthe latter we are looking for linear
strands of the lengths predicted for ligation. Ligation oiille crossover molecules has previously
been shown to be well-behaved (Li et al. 1996). Topologicelbsed structures, such A8CD,
can be assayed by treating with an exonuclease (Ma et al).198hough none of these tests
is absolutely rigorous, together they may give us confidehaethe reactions are proceeding as
predicted.

4.1.1 Materials and Methods

Sequence DesigrThe twelve strands required fé; B, C, D, andD were designed by applying
the principles of sequence symmetry minimization (Seen@@®), where the design process en-
sures that there are no complementary regions betweertdstraxcept as desired. In short, each
double crossover molecule is designed by creating seqeemggopriate for two asymmetric Hol-
liday junctions, then juxtaposing these sequences as jaqi® for a four-stranded DAO, adding

1
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hairpin sequences and re-phasifyandC1 to put the nick in the central region of the DAG1's
hairpin regions are longer tha&l'’s to allowAl andCl to be distinguished on gels. The lengths of
the linkersB andD were chosen such that both DAO units should be nearly cop&starding to
an estimated 10.5 base pairs per double helical full turcEgequences are given in Figure 4.1.

Synthesis and Purification of DNAII strands were synthesized on an Applied Biosystems
380B automatic DNA synthesizer using routine phosphoréeiprocedures (Caruthers 1985).
DNA strands were purified by denaturing polyacrylamide deteophoresis. DNA concentra-
tions were estimated b§ Dog,. All strands were phosphorylated by T4 Polynucleotide K&a
(U.S. Biochemical or Promega), followed by phenol extiattand ethanol precipitation. DNA
was not radiolabeled, with the exception of the DNA used fguFe 4.6, for which 10% of strands
were phosphorylated wit}ff-ATP and mixed with 90% non-radiolabelled strands.

Formation of Hydrogen-Bonded Complexé&domplexesA, B, C, D, and subportions thereof
were formed by mixing stoichiometric quantities of eaclast at concentrations neapM in 1x
USB T4 DNA Ligase buffer (U.S. Biochemical: 66 mM T#4Cl (pH 7.6), 6.6 mM MgCJ, 10
mM DTT, 66 uM ATP; or Promega: 30 mM Tri$ICl (pH 7.8), 10 mM MgCJ, 10 mM DTT, 500
uM ATP). These solutions were annealed for two hours fROFC down to room temperature.

Formation of Covalently Bonded ComplexeSomplexesAB, BC, ABC, ABCD, and ABCD
were formed by mixing stoichiometric quantities of anndale B, C, andD), followed by D after
20 minutes. Up to 50 units of T4 DNA Ligase (U.S. BiochemicaPoomega) were added and
solutions were incubated inl&°C water bath for 2 or 8 hours. One sampleABCD was further
treated by adding%th‘ volume 10x USB Exonuclease Il buffer (U.S. Biochemicalyl 490 units
Exonuclease Il (U.S. Biochemical), incubated3atC for 1 hour. Prior to being loaded in gels,
solutions for gels (a) and (b) were heated3t3C' and again annealed to room temperature, to
denature proteins and re-form hydrogen-bonded compl&agels (c), ligation was followed by
phenol extraction and ethanol precipitation, then sampkse heated t60°C for 5 minutes prior
to being loaded.

Denaturing Polyacrylamide GelsDenaturing gels contain 8.3 M urea and 8% acrylamide
(19:1 acrylamide:bisacrylamide). The running buffer isH®89 mM TrisHCI (pH 8.0), 89 mM
boric acid, 2 mM EDTA). The sample buffer contains 0.1% brbemwl blue and xylene cyanol
FF tracking dyes in 80% formamide with 10 mM EDTA. Samplesterated a80°C for 5 minutes
immediately prior to loading. Gels are run at approxima®&lyV/cm and 35 Watts, then soaked
in StainsAll dye and digitized by DeskScan Il on an Apple Niaash.

Non-denaturing Polyacrylamide Gelslon-denaturing gels contain 12.5 mMg™" and 8%
acrylamide (19:1 acrylamide:bisacrylamide), 0.75 mmkhighe running buffer is TAE/Mg™
(40 mM TrisHCI (pH 8.0), 20 mM acetic acid, 2 mM EDTA, 12.5 mM magnesiunetate).
The loading buffer contains 0.02% bromphenol blue and »y/lgyanol FF tracking dyes and 5%
glycerol in ligation buffer. Gels are run at approximatel§ ¥/cm and 10 Watts a4°C, then
soaked in StainsAll dye and digitized by DeskScan Il on anl&ppacintosh.

4.1.2 Results

Formation of Complexes.

The first question is whether the individual duplexes andotserossover molecules, B, C,
andDwill form from their component strands. Figure 4.2 shows a-denaturing “formation gel”
for double-crossover moleculgsand C. Each lane contains a different subset of strands. Each
lane shows a single prominent band, indicating that thendsrdorm a specific complex. Faint
bands are presumably the result of poor stoichimetry. Famgte, a deficit oA3 in lane 5 could
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explain the minor production 412 in this lane. We estimate that the bandsA@ndCin lanes

3 and 8 contain over 90% of the material; however, this is nguantitative measurement. The
mobilities of the partial complexes férare as would be expected for double-stranded DNA of the
same molecular weightA23 < A12 < A123. Lane 9 contains an anomolous major band: rather
than seeindgC12 at the 132nt level, we see a major and minor band above that2@vel. We
now interpret this as €12C12 dimer bound together at the self-complementdee | andSal

| restriction sites, as shown in Figure 4.3. In the additiggrakence 0€3, these site are double
stranded and the dimer is not produced. Only one of the arrdshafs a restriction site, which
explains why aA12A12 dimer was not also observed.

7% Non-denaturing PAGE
1 2 345 6 7 89 10
7 BRI AT

600 nt| ) pwee s
400 Nt 1 - =
; - 2647 C12C12
200 nt| . - -“
| 172: A
.‘ o » 164 C
140" A12
132: C12

= bd 84: A23. C23

Al2 A23 C123 C123 M
M Al123 A123 C23 Ci12

Figure 4.2: Non-denaturing gel. Lanes 1 and 10: 100 bagsedpable-stranded ladder. Lane 2:
Al2 (140 nucleotides). Lanes 3 andA123 (172 nucleotides). Two preparations of straid
were used, which apparently have different stoichiomdtane 4:A23 (84 nucleotides). Lanes 6
and 8:C123 (164 nucleotides). Two preparations of str&idwere used, which apparently have
different stoichiometry. Lane 23 (84 nucleotides). Lane €12 (132 nucleotides). The band
at= 240 nt is presumably the dim&12C12.

Figure 4.4 shows several stages in the formatio®BED. On the non-denaturing gel, the
duplexes and double crossover molecule®, C, andD form clean bands (a, lanes 1-4) which
migrate with approximately the same mobility as equivalantecular weight duplex DNA. Lig-
ation productAB andBC also show clean bands (a, lanes 9-10). Ligation prodB& appears as
the major band in its lane (a, lane 8); another band appeding dvel ofAB andBC indicating
incomplete ligation. Ligation produ&BCD also appears, we believe, as the major band in its lane
(a,lanes 7 and 5); a slower unidentified band also appeatst éfonuclease treatment, the major
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cl

TTCAGAGCTCCA GGTCTACGT
TTGTCTCGAGGT CACTAGG
TTCGCCGCTTGG ACGTGGT
TTGOGGOGAACC TGAACA(
GTGATCC TGCATATGAC
CCAGAT
ACTTGT
TGCACCA GGCAGCTGAG
c2

cl
TTCAGAGCTCCA GGICTACGT /' GTGATCC TGCATATGAC
TTGTCTCGAGGT CCAGAT( CACTAGG
( TTGCGGCGAACC TGQAO\€§§< TGCACCA GGCAGCTGAG

c2

cl
CAGTATACGT CCTAGT®\ TGCATCTGG ACCTCGAGAC
GGATCAC \ ACGTAGACC TGGAGCTCTGIT
TGGT! TCGIGITCA GGT TH
GAGTCGACGG ACCACGT/A\ AGCACAAGT CCAAGCGGCGTT,

c2

|

Nde |
TTCAGAGCTCCA GGTCTAGGT / GTGATCC TGCATATC  / CCTAGTS, TGCATCTGS ACCTCGAGH
TTGTCTCGAGGT CCAGAT CACTAGG bGTATA GGATCAC\ ACGTAGACC TGGAGCTCT!
TTCGCOGCTTGG ACTTGI ACGTGGT ~ GTCGA( TGGT TCGTGITCA GGTT
TTGOGGOGAACC TGAACA( TGCACCA GGCAGCT! GAG ACCA( AGCACAAGT _CCAA(

Sall

Figure 4.3: Proposed structure causing the anomolous loaRigiire 4.2 lane 9. FirsEl andC2
hybridize to formC12, then twoC12 molecules bind at self-complementary restriction ereym
sites.

band of ligation producABCDis still apparent, though diminished (a, lane 6).

On the denaturing gel, we obtain further evidence of ligagotivity by observing the lengths
of newly created oligonucleotides. Lanes 1-4 can be usedaakens for the lengths of most of
the original oligonucleotidesAl (88), A2 (52), B1 (64), B2 (52), C1 (80),C2 (52),D1 (64), D2
(52). A3 andC3, both 32 nucleotides, ran off the gel. Lane 10, prodABt shows the expected
formation of A2B1 (116) andB2A3 (84); lane 9, producBC, likewise shows the formation of
B1C2 (116) andC3B2 (84); and lane 8, produ&BC, shows the expected formation A2B1C2
(168) andC3B2A3 (116). Lanes 5 and 7, produaBCD, contain only three significant band&i
(88), C1 (80), and a band which migrates slower than a 2000 nuckestignd, according to the
marker (lane 11). This slow band is exonuclease-resistamé 6). We therefore conclude that the
band contains the catenaA2B1C2D1:A3D2C3B2; i.e., ABCD minus theAl andC1 loops, which
apparently were not ligated. Double crossover moleculés tmio nicks have been shown to be
stable (Zhang and Seeman 1994a), suggesting that the nidksaindC1 should not significantly
affect the formation or stability oA or C.

We wished further confirmation of the idenity of the bandss fpossible to determine exactly
which set of oligonucleotides is present in each band byedshtial labelling.” Here, we run a set
of nearly identical experiments, the only difference beivigich oligonucleotide has been phos-
phorylated with*?P. On the gel, only products incorporating the radiolaloetibgonucleotide will
be visisble. Thus, for each band, we can simply read off thedan which it appears to determine
which oligonucleotides are involved in the complex. If méihan one complex co-migrate, the
analysis gets more difficult. This is indeed what happenséngels shown in Figure 4.5: on the
8% gel, the outer circle and the outer:inner complex conégr&hange in mobility with change
in polyacrylamide density distinguishes different topgt@l species, allowing us to separate the
outer circle and outer:inner complex on a 5% gel. Howevethiatpercentage, the inner circle
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8% Denaturing PAGE 8% Non-denaturing PAGE
1234567891011 1234 5 6 78 91011
» ®
= ABCD — 568nt - -
| ABC — 452 nt o
A2B1C2, C2D1A2,A3B2C3D2— 168 nt l [ AB — 288 nt -
; BC — 280 nt
B1C2, A2B1, D1C2, A2D 116 nt o .y - _
A3B2C3, A3D2C3—7 b i = g - %glzl ﬂ% - -
Al— gg n{ L 3 c n
- _—
A3B2, B2C3, C3D2, D2A3— 84 nt —ie ...H..E B.D — 116nt =
B1,D1 — 64Nt == ;
A2,B2,C2,D2 52Nt m e et B
ABCD m BC M A BCD ABCD BC M
(exo) ABC AB (exo) ABC AB

Figure 4.4: (a) Denaturing gel electrophoresis. Lané& {172 nucleotides). Lane B (116 nu-
cleotides). Lane 3C (164 nucleotides). Lane 4 (116 nucleotides). Lane 5: ProdusBCD with
ligase.ABCD contains 568 nucleotides. Lane 6: ProddBCD with ligase and exonuclease. Lane
7: productABCD with ligase. Lane 8: Produ&BC with ligase. ABC contains 452 nucleotides.
Lane 9: ProducBC with ligase. BC contains 280 nucleotides. Lane 10: ProdaBtwith lig-
ase. AB contains 288 nucleotides. Lane 11: 100 base-pair doutdedstd ladder. Numbers at
right indicate estimated positions for expected produmiasistent with the marker lane. (b) Non-
denaturing gel electrophoresis: LaneAl{172 nucleotides). Lane B (116 nucleotides). Lane 3:
C (164 nucleotides). Lane D (116 nucleotides). Lane 5: ProdudBCD with ligase.ABCD con-
tains 568 nucleotides. Lane 6: Prodd&CD with ligase and exonuclease. Lane 7: prodd8€CD
with ligase. Lane 8: Produ@&BC with ligase. ABC contains 452 nucleotides. Lane 9: Product
BC with ligase.BC contains 280 nucleotides. Lane 10: Prod&Btwith ligase. AB contains 288
nucleotides. Lane 11: 100 base-pair double-stranded latdenbers at right indicate estimated
positions for expected products, consistent with the nrdage.

and the 232-mer linear strand comigrate! Note that ligase we as efficient in this experiment
as it was in the previous experiment: tABCD lane contains many partial products, indicating
incomplete ligation of nicks in théBCD complex, or poor stoichiometry so that maABCD
complexes were lacking one or more strand. This is turnsbi tconvenient for interpretting the
next experiment, where ligation was again incomplete.

Specificity of Reaction.

Figure 4.6 shows the results of a preliminary experimenestigating the effectiveness of
Dvs D infilling the slot created byABC. Lane 13 contain&BC, and thus has primary bands for
A2B1C2 (168) andC3B2A3 (116). Lanes 2 and 12 show ligationABCDin 1:1:1:1 stoichiometry.
The ligation apparently was not as complete as in 4.4, agadvends of “partial products” are
observed. The fastest band is appropriate for lin&&iD2C3B2 (168) and cyclical permutations;
the next band is appropriate for lineBtC2D1 or D1A2B1 (180); the next major band is appropriate
for A2B1C2D1 (232) and cyclical permutations. The band belows known from other gels
(not shown) to be exonuclease-resistant, and the two cylitecule bands are thought to be
an indicator of the formation 0ABCD. Lanes 1 and 10 show ligation 8BC with respectively an
equimolar amount or a 20-fold excesd®fWe again see the linear bands of lengths 168, 180, and
232, while bands at 13®2C3B2) and 116 C3B2A3 andA3D2C3) become significant. Critically,
the slow circular products are missing, suggesting Biavas only ligated on the side where it
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Figure 4.5: Denaturing gel electrophoresis with radioligsestrands. All lanes contadBCD, but
in each lane only one strand was radiolabelled. (Note tleagiéhls were improperly dried, leading
to “smearing” after the gel was run.)
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B2C3D2, D2A3B2—— 136 nt = i:j bt s
B1C2, A2B1, D1C2, A2D 116 nt : : B2 s i i o2
A3B2C3, A3D2C3—z a8 nt : bl
A3B2, B2C3, C3D2, D2A3— 84 nt — s ey -
c1— 80nt £
B1,D1— 64nt — = - - .
A2,B2, C2,D2— 52 nt —— -
1:0 1:2 1:8 1:32 0:20 1.0
0:1 1:1 1:4 1:16 1:64 1:1 0:0

Figure 4.6: Denaturing gel electrophoresis. All lanes atmA:B:C in 1:1:1 stoichiometry, plus
various concentrations of D:D’. Lane 1-9: D:D’ = 0:1, 1:0111:2, 1:4, 1:8, 1:16, 1:32, 1:64.
Lanes 10-13: D:D’'=0:20, 1:1, 1:0, 0:0. (Note: the first gebwtightly ripped during staining.)

matches the slot’s sticky end. Lanes 11 and 3-9 show ligati@me unit ofABC with an z-fold
excess oD and equimolaD, wherez ranges from 1 to 64. In every case, the closed molecule
is formed, indicating thafBCDis still formed in the presence of competiBg Additional bands
also appear, possibly due to unexpected interactionsvimgpD1 or D2.

4.1.3 Discussion

We interpret these results as follows. First, we believe e are making théABCD complex,
with the caveat that we believe the nicksfh andC1 are not being sealed. This suggests that (1)
in ABC, the linkerB is properly spaced such that double crossover moledusd C are roughly
coplanar, and (2) that in each double crossover molecuetvib helical axes are also roughly
coplanar. Second, we observe tBatvhich matches the sticky ends on both sidesBC's slot,
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out-compete®’, which matches only on one side, even whigiis 64-fold more abundant thab.
We plan to quantitate the thermodynamics of this reactichémear future.

The experiments reported here bear on the two-dimensietfiahssembly process postulated
in Section 3.2.5. These experiments are meant to model & stay-filling step during the self-
assembly of a two dimensional lattice. In our experimeritis, fundamental step can occur, and
with some specificity. These results encourage us to exatmigmetep in closer detail in the future,
as well as to attempt the self-assembly of an entire sheethdffe that the self-assembly of an
algorithmically patterned sheet of DNA can eventually befies by TEM or AFM microscopy.

The self-assembly of molecules can correspond to sevetbkmn@vn computational classes
up to and including universal computation. This suggesis éixternal processing is not an in-
trinsic element of molecular computation; computationalhiversal “one-pot” reactions seem
plausible. We have shown some encouraging but prelimingrgramental investigations into the
fundamental computational step in our two dimensionalastembly model. The generality of
the approach used here suggests that the potential forrsaiveomputation may be widespread
among self-assembly processes in nature. In addition toghieieresting in its own right as a
universal mechanism, it may be worth considering whethestif-assembly processes described
here could be useful technologically, perhaps as part opanoach to nanotechnology (Li et al.
1996).

4.2 Experiments with 2D Lattices

Abstract? Molecular self-assembly presents a bottom-up approadtettab-
rication of objects specified with nanometer precision. DiNglecular struc-
tures and intermolecular interactions are particularlyeaable to design and
are sufficient for the creation of complex molecular objeddere we report
the design and observation of two-dimensional crystaliimens of DNA that
self-assemble from synthetic DNA double-crossover madéscuntermolecu-
lar interactions are programmed by the design of sticky ehds associate
according to Watson-Crick complementarity, enabling usreate specific
periodic patterns on the nanometer scale. The patternedfatsyhave been
visualized by atomic force microscopy.

Control of the detailed structure of matter on the finest issscale is a major goal of chem-
istry, materials science and nanotechnology. This goal beagpproached in two steps, (1) the
construction of individual molecules, represented by thertphs of synthetic chemistry, and (2)
the arrangement of molecular building blocks into largenctures. The simplest arrangement of
molecular units, in two or three dimensions, is a crystal.siie components for crystals must
have definable intermolecular interactions and must be ggiough to prevent the formation of
ill-defined aggregates (Liu et al. 1994). Branched DNA moles with sticky ends appear to be

2Results in this section also appear in Winfree et al. (198&),include joint work with Furong Liu, Lisa A. Wenzler,
and Nadrian C. Seeman, as described in Chapter 1. ThankhrcAbelson and his group for the use of his laboratory
and technical advice; to Anca Segall, Ely Rabani, and BotsMaifor instruction and advice on AFM imaging; and to
the Beckman Institute Molecular Materials resource cefaieassistance and use of their AFM facilities.
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promising for macromolecular crystal design (Seeman 1982)ause their intermolecular inter-
actions can be programmed through sticky ends (Cohen e2'&8) that associate to form B-DNA
(Qiu et al. 1997); however, studies of three- and four-amtiions reveal that the angles flanking
their branchpoints are flexible (Ma et al. 1986; Petrillo let.l888).

The need for a rigid design component with predictable amdrotiable interactions has led to
the utilization of the antiparallel DNA double-crossoveotih(Fu and Seeman 1993) for this pur-
pose. Double-crossover (DX) molecules are analogs ofriredrates in meiosis (Schwacha and
Kleckner 1995) which consist of two side-by-side doubtesstied helices linked at two crossover
junctions. Antiparallel DX molecules have been shown tespss the rigidity lacking in conven-
tional branched junctions, thus suggesting that they ntighguitable for use in the assembly of
periodic matter (Li et al. 1996).

These findings stimulated a theoretical proposal to usediweensional (2-D) lattices of DX
molecules (Winfree 1996b) for DNA-based computation (Awhe 1994). In the mathematical
theory of tilings (Grinbaum and Shephard 1986), rectargtiles with programmable interac-
tions, known as Wang tiles, can be designed so that theimdgenust mimic the operation of a
chosen Turing Machine (Wang 1963). DX molecules acting aeomtar Wang tiles could self-
assemble to perform desired computations (Winfree 1996bfréé et al. in press; Reif in press).
Consequently, the ability to create 2-D lattices of DX males assumes additional interest as a
step toward the design of molecular algorithms.

Here, we report the assembly from DX molecules of three 2tizks with two distinct topolo-
gies. The DX moleculesy 2 x 4 x 13 in size, self-assemble in solution to form single-domain
crystals as large & x 8 microns with uniform thickness between 1 and 2 nm, as vizedlby
atomic force microscopy (Binnig et al. 1986) (AFM). By inporating a DNA hairpin into a DX
molecule to serve as a topographic label, we have produdpgstibove the surface at intervals
of 25. Two-component lattices have been assembled wittipe gvery other unit.

4.2.1 Design of DNA Crystal

Our approach to two-dimensional crystal design is derivethfthe mathematical theory of tiling
(Grinbaum and Shephard 1986; Winfree 1996b). The desitédd is specified by a set of Wang
tiles with colored edges; the Wang tiles may be placed negatth other only if their edges are
identically colored where they touch (Figure 4.7a). Ourlg®to design synthetic molecular units
corresponding to these tiles, such that they will self-adse into a crystal that obeys the coloring
conditions. As an initial demonstration of molecular Waitest we have chosen the simplest non-
trivial set of tiles: two tiles, A andB, which make a striped lattice (Figure 4.7a, left). Traredat
into molecular terms, we obtain DX systems that self-as$elinbsolution into two-dimensional
crystals with a well-defined subunit structure.

The antiparallel DX motif (Fu and Seeman 1993) consists ofjtwtaposed immobile 4-arm
junctions (Seeman 1982) arranged such that at each jurtbtamon-crossover strands are antipar-
allel to each other. There are five distinct DX motifs, butyorlo are stable in small molecules
(Fu and Seeman 1993): these are called DAO (double crossavgparallel, odd spacing) and
DAE (double crossover, antiparallel, even spacing). Thegiedepends critically upon the twist
of the B-form DNA double helix, in which a full turn takes pkamn ~ 10.5 base pairs (Wang 1979;
Rhodes and Klug 1980). DAO molecules have an odd number bifurak (e.g. 3 half-turns is
~ 16 base pairs) between the crossover points, while DAE ratdechave an even number of
half-turns (e.g. 4 half-turns is 21 base pairs). Computer models of the DX molecules used in
this study, shown in Figure 4.7b, were generated using NARI@arter and Tung 1996). Com-
plete base stacking at the crossover points is assumed. ABeniblecules consist of 4 strands
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Figure 4.7: Design of DX molecular structure and arrangenmn 2-D lattices.a, The logical
structure for 2-D lattices consisting of two units. TyAeunits have four colored edge regions,
each of which match exactly one colored region of the adjaiygre B units. Note that rotations
and reflections of Wang tiles are disallowed; an equivalestriction could also be obtained by
using non-rectangular tiles or more complex patterns asrsob, Model structures for DAO type
A units. Each component oligonucleotide is shown in a unigplerc The crossover points are
circled. ¢, The lattice topologies produced by the DAO. Each DX uniigdhtighted by a grey rect-
angle. A unique color is chosen for each strand type whichavioe formed after covalent ligation
of units. Arrowheads indicate tt#8 ends of strands. Black ellipses indicate dyad symmetry axes
perpendicular to the plane; black arrows indicate dyad ax#ee plane (full arrowhead) or screw
axes (half arrowheadyl, The actual sequences used in the reported experimentsiétheds for
several exceptions). The schematics accurately repemdied primary and secondary structure
— oligonucleotide sequence and paired bases — but are noiegiecally or topologically faithful
because they don’t show the double helical twist. Both figpand typeB are shown, indicating
where the hairpin sequences are inserted.

of DNA, each of which participates in both helices. The DAElecales consist of 3 strands
that participate in both helices (yellow, light blue, grgeand 2 strands that do not cross over
(red, dark blue). Each corner of each DX unit has a singlnstied sticky end with a unique se-
guence; specific association of DX units is controlled byading sticky ends with Watson-Crick
complementarity.

To ensure that the component strands form the desired caeglstrand sequences must be
designed carefully so that alternative associations anfbamations are unlikely. Therefore we
must solve the “negative design problem” (Seeman 1990; Ywk[Rill 1992; Sun et al. 1996)
for DNA: find sequences that maximize the free enaifferencebetween the desired conforma-
tion and all other possible conformations. We use the heurpsinciple of sequence symmetry
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minimization (Seeman 1982, 1990) to minimize the length runthber of unintentional Watson-
Crick complementary subsequences. In each DX moleculgisesees, there are no 6-base sub-
sequences complementary to other 6-base subsequences axaequired by the design, and
spurious 5-base complementarity is rare. Thus it is expletttat during self-assembly, the DNA
strands spend little time in undesired associations amd X units with high yield.

DX units can be designed that will fit together into a two-disienal crystalline lattice. Here
we use two distinct DAO unit types (Figure 4.7a) to producipstl lattices. The lattices produced
by this system is called DAO-E to indicate the number of hailfis between crossover points
on adjacent units; its topology is shown in Figure 4.7c. Tymarsetries of the DAO-E lattice
is that corresponding to the layer group (Vainshtein 19@4p2. Covalently joining adjacent
nucleotides at nicks in the lattice, by chemical or enzymbdjation, would result in a “woven
fabric” of DNA strands. Ligation of the DAO-E design prodsc®ur distinct strand types, each
of which continues infinitely in the vertical direction (ihis paper, “vertical” and “horizontal”
will always be as in Figure 4.7c¢).

Control of self-assembly to yield the 2-D lattice is obtalri®y two design criteria. First, the
sticky-end sequences for each desired contact are unigiseenisures that the orientations and
adjacency relations of the DX units comply exactly with tlesidn in Figure 4.7a. Sticky ends are
length 5, so that each correct contact contributes appibeiy 8 to the free energy of association
at 25 C, according to a nearest-neighbor model (SantaLucia et98I6)l Second, the lengths
of the DX arms and sticky ends, and thus the separations batemssover points, respect as
closely as possible the natural twist of the B-form DNA daubélix; thus adjacent DX molecules
are effectively coupled by torsional springs whose equilild positions have been designed to
keep the adjacent DX molecules coplanar. For example, arliagher than planar polymer could
result if each unit makes two sticky-end bonds to each neighdy unit, but this would require
overtwisting, undertwisting, or bending of the double kedind thus is discouraged by our design.

Figure 4.7d shows the DX units and sequences used in ourimgyes, except as noted in
Methods. In each system, there are two fundamental DX witled A andB, and, additionally,
an alternative fornB that contains two hairpin-terminated bulged 3-arm juni¢similar to the
DX+J motif (Li et al. 1996)). Based on studies of bulged 3-gunctions (Ouporov and Leontis
1995), we expect that in each unit, one hairpin will point uqa @ut of the plane of the DX
crystal, while the other hairpin will point down and into tplane, without significantly affecting
the rigidity of the molecule (Li et al. 1996). TH8 units will replace theB units and serve as
contrast agents for AFM imaging, because their increasgghhean be measured directly.

4.2.2 Materials and Methods

DNA sequences and synthesisFigure 4.7d shows sequences used in these experiments; for
historical reasons, some figures show experiments wheramnsiof these sequences were used.
The sequences for DAO-B, B, andB given in Figure 4.7d were used for Figure 4.12bc. Fig-
ure 4.12adef show DAO systems with symmetrical sticky etftssequence for the green strands
of DAO A is 5'TCACT. . . GAGAT3’ and the sequence for the blue strands of DBGand B
are5’AGTGA. . . ATCTC3'. All oligonucleotides were synthesized by standard meth6AGE
purified, and quantitated by UV absorption280 nm in H,O.

Annealing of oligonucleotides.The strands of each DX unit were mixed stoichiometrically
and dissolved to concentrations of .2 tau®I in TAE/Mg™ " buffer (40 mM TrisHCI (pH 8.0),
1 mM EDTA, 3 mM Na", 12.5 mM Mg"*). The solutions were annealed from°@0to room
temperature over the course of several hours in a PerkireERCR machine (to prevent concen-
tration by evaporation). To produce lattices, equal am®oheach DX were mixed and annealed
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from 50°C to 20°C over the course of up to 36 hours. In some cases (Figure £}l allstrands
were mixed together from the very beginning.

Gel electrophoresis studies.For gel-based studies, T4 polynucleotide kinase (Amer$ham
was used to phosphorylate strands witR; these strands were then PAGE purified and mixed
with an excess of unlabeled strands. Non-denaturing 4% 05®% PAGE (19:1 acrylamide:bis-
acrylamide) in TAE/Mg + was performed at®4" or at room temperature. For denaturing exper-
iments, after annealing in T4 DNA ligase buffer (Amershagg (hnM TrisHCI(pH 7.6), 6.6 mM
MgCl,y, 20 MM DTT, 66uM ATP), 111=10 units T4 DNA ligase (Amersham) was added tq.10
DNA solution and incubated for up to 24 hours at @6or at room temperature. For exonuclease
reactions, 50 units of exonuclease Il (Amersham) and Swfiexonuclease | (Amersham) were
added after ligation, and incubated an additional 3.5 hauBs C. The solution was added to an
excess of denaturing dye buffer (0.1% xylene cyanol FF tracklye in 90% formamide with 1
mM EDTA, 10 mM NaOH) and heated to 90 for at least 5 minutes prior to loading. Denaturing
gels contained 4% acrylamide (90:1 acrylamide:bisacridajnand 8.3 M urea in TBE (89 mM
Tris-HCI (pH 8.0), 89 mM boric acid, 2 mM EDTA). Gels were analyzgdphosphorimager.

Preparation of AFM sample. 2 to 10ul were spotted on freshly cleaved mica (Ted Pella,
Inc) and left to adsorb to the surface for 2 minutes. To remumviéer salts, 5 to 10 drops of
doubly-distilled or nanopure $#0 were placed on the mica, the drop was shaken off and the
sample was dried with compressed air. Imaging was perforungér isopropanol in a fluid cell
on a NanoScope Il using the D or E scanner and commercial:g200antilevers with SiN, tips
(Digital Instruments). The feedback setpoint was adjusteguently to minimize contact force
to approximately 1 to 5 nN. Images were processed with a finsthird-order “flatten filter,”
which independently subtracts a first- or third-order polyral fit from each scanline to remove
tip artifacts; however, this technique introduces faldebows” into the images shown here.

4.2.3 Results of Characterization by Gel Electrophoresis

A prerequisite for lattice self-assembly is the formatidnttee DX units from their component
strands. A thorough investigation of this issue was donelferoriginal studies of DX (Fu and
Seeman 1993); that the new designs also behave well caestituther validation of the antipar-
allel DX motif. Because the sticky ends a&f units have affinity only for sticky ends @ units,
and not for themselves, neithé& nor B alone in solution can assemble into a lattice. Thus the
formation of isolated DX units can be monitored easily by-a@maturing gel electrophoresis, as
described previously (Fu and Seeman 1993), and greateOtyarof the material is seen in the
expected band foA and greater thag5% for B(Figure 4.8). Additionally, complexes are formed
only by strands which were designed to interact. However, stBanfiB does not bind fully to
strand 4, unless strand 2 is also present. This may be duedteatjal hairpin structure near the
5" end of strand 3; when strand 2 binds to strand 3, we postiiatetis hairpin is undone. Note
also that dimer and multimer species are not found, and iticpéar note that the individuaA or

B monomers do not assemble into extended structures, subk desired lattice.

Solutions containingA units andB units can be mixed and annealed to foAB lattices.
Lane 4 of Figure 4.9(left) shows that the self-assembladtsire is too large to migrate through
the gel, although a fraction of the material is coming out la# tvell in a smear. Enzymatic
ligation of these lattices with T4 DNA ligase produces imih@lmaterial, while theA and B
units alone are not substrates for ligation (Figure 4.§(I&he nicks in the lattice, where strands
from adjacent DX units abut, are all on the upper or loweraefof the lattice, where they are
accessible to the enzyme. The ligated lattice should aotdaig covalent DNA strands, which
serve as reporters of successful lattice formation (shati@nds report either the presence of
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Figure 4.8: Formation gels for th& andB double-crossover molecules, run &Clby 5% non-
denaturing PAGE. Every strand is radiolabelled so that tjtzion is possible.

small aggregates or an occasional failure to ligate within lattice). All four reporter strands
extend for more than 30 repeats when visualized by dengtpoiyacrylamide gel electrophoresis
(Figure 4.9, right). Longer strands co-migrate on this gelwe cannot determine the full extent
of polymerization. These results suggest that the latdce good substrate for T4 DNA ligase,
and that the lattices can form with more thahx 30 units. However, unintended associations or
side reactions could lead to similar distributions of sttdengths after ligation. Direct physical
observation is necessary to confirm lattice assembly.
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Figure 4.9: (left) Non-denaturing gel, StainsAll stain. nes 2-4 showA alone,B alone, and
AB together. Lanes 5-7 show alone ligatedB alone ligated andA B together ligated. All the
material in lane 7 is in a sharp band directly around the vegitied); this band can be seen clearly
in color, but not in the B/W rendition here. (right) Denangigel, with differential radiolabelling.
Every lane contains either marker or ligatAd; in each lane the radiolabelled oligonucleotide is
indicated below.
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As a control to test the 4-connected nature of the putatitiedaproduct, versions oA and
B were made with certain sticky ends truncated, as shown ior€ig.10. A,, and B, were
designed to make vertical one-dimensional chains of DXsumt, andB; were designed to
make horizontal one-dimensional chains of DX units; a%gandB, were designed to make
diagonal one-dimensional chains of DX units. However,auitlike theAB product stuck in the
well, all three truncated systems produced what appear ttirbers on the non-denaturing gel.
No ligase was used. Apparently, the chain structures dneraitot being made, or they are falling
apart into dimers in the gel. We do not yet understand thesdtge

5% Non-denaturing PAGE

1234567 8 910 111213 Ei Ei
L
“ b

2706 nt
- D
e
236 nt
e

e Ay oo B
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AB AB, MAB, A.B D}if By

AB ' AB AB,  AB,

v Ad

Figure 4.10: (left) 5% Non-denaturing gel, with radioldlvg] of A3 andB3. (right) Diagram of
the truncated DX units, and intended chain structures.

4.2.4 Results of AFM Imaging

We have used atomic force microscopy (Binnig et al. 1986)d@mahstrate unequivocally the
formation of 2-D lattices.A andB units are annealed separately, then combined and annealed
together to formAB lattices. The resulting solution is deposited for adsorpton an atomi-
cally flat mica surface, and then imaged under isopropanaooyact mode AFM (Hansma et al.
1992). The solution is not treated with DNA ligase, and ths lattices are held together only
by noncovalent interactions (e.g. hydrogen bonds and laskiisg). This protocol ensures that
the solution contains no protein contaminants and dematesttthat ligase activity is not neces-
sary for the self-assembly process. Negative controls fiebalone and ofA or B alone show

no aggregates larger than 20 nm (Figure 4.11abc). In sepexaerimentsA andB DAQO units
were modified by the removal of two sticky ends from each umig.( all yellow and red sticky
ends in Figure 4.7d); when the modifiddandB units were annealed together, we observed only
linear and branched structures with apparent widths tylgitess than 10 nm (Figure 4.11def),
providing additional negative controls. However, the uniified AB samples contain 2-D sheets
many microns long, often more than 200 nm wide (Figure 4.12d)e apparent height of the
sheets id .4 + .5 nm, suggesting a monolayer of DNA. The sheets often seeradippd appear

to have a grain, in that rips have a preferred direction cest with the design (Figure 4.7c). In
the DAO-E lattice, a vertical rip requires breaking six kyieend bonds per 12 nm torn, whereas
a horizontal rip requires breaking only one sticky-end bped 13 nm torn. A possible vertical

www.manaraa.com



92

column, perpendicular to the rips, is indicated in Figurg24. (arrows). Although in this image
the columns are barely perceptible, Fourier analysis steomsak atl3 + 1 nm, suggesting that

observed columns are 1 DX wide. Periodic topographic featuvould not be expected in the
ideal AB lattice; however a vertically stretched lattice may havpsgetween the DX units that
could produce the periodic features seen here. Becaudrlsrgse found in AFM samples taken
from both the top and the bottom of the solution, we beliew tnystals form in solution and are
not due to interaction with a surface.

Figure 4.11: AFM images of buffer (a\ andB controls (b and c respectively), and sticky-end-
truncation controlsAB, (d), AB,, (e), andAB, (). All scale bars are 300 nm; images show
500 x 500 nm, 1 x 1 pm, or 3 x 3 pm. The grayscale indicates height above the mica surface;
apparent height of features is less than 5 nm.

4.2.5 Control of Surface Topography

The self-assemblin@d\ B lattice can serve as scaffolding for other molecular stneg. We have
decoratedB with two DNA hairpin sequences inserted into its compongatngls, which we call
B (Figure 4.7d). So decorated, the vertical columns of thicexbecome strikingly apparent as
stripes in AFM images (Figure 4.12bc), further confirming troper self-assembly of the 2-D
lattice. The spacing of the decorated columngist 2 nm for the DAO-E lattice, indicating
that every other column is decorated, in accord with thegiesiSlow annealing at 2@ and
gentle handling of the DAO-E sample during deposition anghireg has produced single crystals
measuring up t@ x 8 um(Figure 4.12def). Close examination shows that the stapesontinuous

it appears to be a single doroataining over 500,000 DX units.
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Figure 4.12: AFM images of unmodified DAO-KB lattice (a). A possible vertical column is
indicated by the arrows. Fourier analysis shal8s+ 1 nm periodicity; each DAO is 12.6 nm
wide. (b) and (c) show DAO-RB lattice (two views of the same sample). Stripes h2ve- 2
nm periodicity; the expected value is 25.2 nm. (def) showgelaingle-domain crystal of DAO-E
AB lattice at three levels of detail (all the same sample). hgelst domain is roughly x 8 ym,
and contains roughly 500,000 DX units. All scale bars are 13®0images show00 x 500 nm,
1.5 x 1.5 um, or 10 x 10 um. The grayscale indicates height above the mica surfacegrapp
lattice height is between 1 and 2 nm.

We have also tested DAO systems incorporating only one otwieehairpins inB, DAO
systems in which the 3-arm junctions are relocated by twdentides toward the center of the
molecule. All systems produced results similar to thosenshim Figure 4.12 when imaged by
AFM (data not shown). The lattice assembly appears to bestdbwariations in the local DX
structure and is not sensitive to small variations in theeating protocol. (Also see Winfree
et al. (1998) for similar results obtained in another labamausing different buffers, annealing
conditions, and AFM instruments.)

In all images of AB and AB systems, we observed many DNA structures in addition to
the isolated 2-D crystals discussed above. In many imageg8-1D crystals appear to overlap,
leading to discrete steps in thickness (Figure 4.12cdeg artangement of crystals on the mica
— solitary, overlapping, piled up like driftwood, rippedgsbreds — depends sensitively upon DNA
concentration and upon the sample preparation procedspecilly the wash step. Prominently,
the background of every image contains small objects, whiehassume to be associations of

of DX units. Also, long, thin “rods” appear ante preparations (data not shown).
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These structures have not been characterized.

4.2.6 Applications

The programmability of the system described here has ajlrbadn demonstrated by Winfree
et al. (1998), where a system of four tiles is developed tapce stripes of twice the periodicity.
The produced lattice can serve as a molecular scaffoldedadsvf DNA hairpins, other chemical
groups can be used to label the DX molecules. Previous gitayesused biotin-streptavidin-gold
to label linear DNA for imaging by AFM (Shaiu et al. 1993a,M)infree et al. (1998) uses 1.4
nm nanogold-streptavidin conjugates to label DAE molexukéor these experiments, the central
strand ofB contains &' biotin group; after assembly @B lattices, the solution containing DNA
lattices was incubated with streptavidin-nanogold coajag and then imaged by AFM.

Self-assembly is increasingly being recognized as a routatiotechnology (Whitesides et al.
1991). Our results demonstrate the potential of using DNAr&ate self-assembling periodic
nanostructures. The periodic blocks used here are compdsather two or four individual DX
units. However, the number of component tiles in the repeétdoes not appear to be limited
to such small numbers, suggesting that complex patterrid betassembled into periodic arrays.
These patterns could be either direct targets in nanofatiwit or aids to the construction of such
targets. Because oligonucleotide synthesis can readilgrjiorate modified bases at arbitrary
positions, it should be possible to control the structurthinithe periodic block by decoration
with chemical groups, catalysts, enzymes and other pot@iliemeyer et al. 1994), metallic
nanoclusters (Alivisatos et al. 1996; Mirkin et al. 1996)nducting silver clusters (Braun et al.
1998), DNA enzymes (Breaker and Joyce 1994) or other DNA stanctures such as polyhedra
(Chen and Seeman 1991; Zhang and Seeman 1994b).

It may be possible to extend the two-dimensional latticematestrated here into three di-
mensions. Designed crystals could potentially serve a$osdsifor the crystallization of macro-
molecules (Seeman 1982), as photonic materials with noeplgpties (Joannopolous et al. 1995),
as designable zeolite-like materials for use as catalysts molecular sieves (Ribeiro et al. 1996),
and as scaffolds for the assembly of molecular electronfopmnents (Robinson and Seeman
1987) or biochips (Haddon and Lamola 1985).

The self-assembly of aperiodic structures should also Insidered. It may be possible to
design molecular Wang tiles that self-assemble into ageriorystals according to algorithmic
rules (Winfree 1996b; Winfree et al. in press). It will be cial to understand the mechanisms of
crystallogenesis and crystal growth in this system to mte\a firm underpinning for theoretical
proposals of computation by self-assembly.

Progress in this field will require detailed knowledge of pigssical, kinetic, structural, dy-
namic and thermodynamic parameters that characterize DNifassembly. Additionally, im-
proved methods for error reduction and purification must &eetbped. The approach described
here provides a uniquely versatile experimental systennfastigating these issues.
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